Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(11): e0207436, 2018.
Article in English | MEDLINE | ID: mdl-30475848

ABSTRACT

Intracellular transport of organelles is fundamental to cell function and health. The mounting evidence suggests that this transport is in fact anomalous. However, the reasons for the anomaly is still under debate. We examined experimental trajectories of organelles inside a living cell and propose a mathematical model that describes the previously reported transition from sub-diffusive to super-diffusive motion. In order to explain super-diffusive behaviour at long times, we introduce non-Markovian detachment kinetics of the cargo: the rate of detachment is inversely proportional to the time since the last attachment. Recently, we observed the non-Markovian detachment rate experimentally in eukaryotic cells. Here we further discuss different scenarios of how this effective non-Markovian detachment rate could arise. The non-Markovian model is successful in simultaneously describing the time averaged variance (the time averaged mean squared displacement corrected for directed motion), the mean first passage time of trajectories and the multiple peaks observed in the distributions of cargo velocities. We argue that non-Markovian kinetics could be biologically beneficial compared to the Markovian kinetics commonly used for modelling, by increasing the average distance the cargoes travel when a microtubule is blocked by other filaments. In turn, sub-diffusion allows cargoes to reach neighbouring filaments with higher probability, which promotes active motion along the microtubules.


Subject(s)
Microtubules/physiology , Models, Biological , Animals , Biological Transport, Active/physiology , Humans
2.
J Microsc ; 264(3): 375-383, 2016 12.
Article in English | MEDLINE | ID: mdl-27541861

ABSTRACT

Super-resolution localisation microscopy techniques depend on uniform illumination across the field of view, otherwise the resolution is degraded, resulting in imaging artefacts such as fringes. Lasers are currently the light source of choice for switching fluorophores in PALM/STORM methods due to their high power and narrow bandwidth. However, the high coherence of these sources often creates interference phenomena in the microscopes, with associated fringes/speckle artefacts in the images. We quantitatively demonstrate the use of a polymer membrane speckle scrambler to reduce the effect of the coherence phenomena. The effects of speckle in the illumination plane, at the camera and after software localisation of the fluorophores, were characterised. Speckle phenomena degrade the resolution of the microscope at large length scales in reconstructed images, effects that were suppressed by the speckle scrambler, but the small length scale resolution is unchanged at ∼30 nm.

SELECTION OF CITATIONS
SEARCH DETAIL
...