Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 143
Filter
1.
Lancet Microbe ; 5(6): e520-e528, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608680

ABSTRACT

BACKGROUND: Xpert MTB/RIF Ultra (Ultra) is an automated molecular test for the detection of Mycobacterium tuberculosis in sputum. We compared the sensitivity of Ultra to that of mycobacterial growth indicator tube (MGIT) liquid culture, considered the most sensitive assay in routine clinical use. METHODS: In this prospective, multicentre, cross-sectional diagnostic accuracy study, we used a non-inferiority design to assess whether the sensitivity of a single Ultra test was non-inferior to that of a single liquid culture for detection of M tuberculosis in sputum. We enrolled adults (age ≥18 years) with pulmonary tuberculosis symptoms in 11 countries and each adult provided three sputum specimens with a minimum volume of 2 mL over 2 days. Ultra was done directly on sputum 1, and Ultra and MGIT liquid culture were done on resuspended pellet from sputum 2. Results of MGIT and solid media cultures done on sputum 3 were considered the reference standard. The pre-defined non-inferiority margin was 5·0%. FINDINGS: Between Feb 18, 2016, and Dec 4, 2019, we enrolled 2906 participants. 2600 (89%) participants were analysed, including 639 (25%) of 2600 who were positive for tuberculosis by the reference standard. Of the 2357 included in the non-inferiority analysis, 877 (37%) were HIV-positive and 984 (42%) were female. Sensitivity of Ultra performed directly on sputum 1 was non-inferior to that of sputum 2 MGIT culture (MGIT 91·1% vs Ultra 91·9%; difference -0·8 percentage points; 95% CI -2·8 to 1·1). Sensitivity of Ultra performed on sputum 2 pellet was also non-inferior to that of sputum 2 MGIT (MGIT 91·1% vs Ultra 91·9%; difference -0·8 percentage points; -2·7 to 1·0). INTERPRETATION: For the detection of M tuberculosis in sputum from adults with respiratory symptoms, there was no difference in sensitivity of a single Ultra test to that of a single MGIT culture. Highly sensitive, rapid molecular approaches for M tuberculosis detection, combined with advances in genotypic methods for drug resistance detection, have potential to replace culture. FUNDING: US National Institute of Allergy and Infectious Diseases.


Subject(s)
Mycobacterium tuberculosis , Sputum , Tuberculosis, Pulmonary , Humans , Mycobacterium tuberculosis/isolation & purification , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/growth & development , Sputum/microbiology , Adult , Female , Male , Cross-Sectional Studies , Prospective Studies , Middle Aged , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/microbiology , Sensitivity and Specificity , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/standards , Young Adult , Aged
2.
Sci Rep ; 13(1): 21927, 2023 12 11.
Article in English | MEDLINE | ID: mdl-38081834

ABSTRACT

The continued emergence of vaccine-resistant SARS-CoV-2 variants of concern (VOC) requires specific identification of each VOC as it arises. Here, we report an expanded version of our previously described sloppy molecular beacon (SMB) melting temperature (Tm) signature-based assay for VOCs, now modified to include detection of Delta (B.1.617.2) and Omicron (B.1.1.529) sub-variants. The SMB-VOC assay targets the signature codons 501, 484 and 452 in the SARS-CoV-2 spike protein which we show can specifically detect and differentiate all known VOCs including the Omicron subvariants (BA.1, BA.2, BA.2.12.1, BA.4/BA.5). The limit of detection (LOD) of the assay was 20, 22 and 36 genomic equivalents (GE) per reaction with the Delta, Omicron BA.1 and BA.2 respectively. Clinical validation of the 3-codon assay in the LC480 instrument showed the assay detected 94% (81/86) of the specimens as WT or VOCs and 6% (5/86) of the tests producing indeterminate results compared to sequencing. Sanger sequencing also failed for four samples. None of the specimens were incorrectly identified as WT or as a different VOC by our assay. Thus, excluding specimens with indeterminant results, the assay was 100% sensitive and 100% specific compared to Sanger sequencing for variant identification. This new assay concept can be easily expanded to add newer variants and can serve as a robust diagnostic tool for selecting appropriate monoclonal antibody therapy and rapid VOC surveillance.


Subject(s)
COVID-19 , Magnoliopsida , Humans , COVID-19/diagnosis , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , Temperature , COVID-19 Testing
3.
medRxiv ; 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37461515

ABSTRACT

Background: The evolution of tuberculosis (TB) disease during the clinical latency period remains incompletely understood. Methods: 250 HIV-uninfected, adult household contacts of rifampicin-resistant TB with a negative symptom screen underwent baseline 18F-Fluorodeoxyglucose positron emission and computed tomography (PET/CT), repeated in 112 after 5-15 months. Following South African and WHO guidelines, participants did not receive preventive therapy. All participants had intensive baseline screening with spontaneous, followed by induced, sputum sampling and were then observed for an average of 4.7 years for culture-positive disease. Baseline PET/CT abnormalities were evaluated in relation to culture-positive disease. Results: At baseline, 59 (23.6%) participants had lung PET/CT findings consistent with TB of which 29 (11.6%) were defined as Subclinical TB, and 30 (12%) Subclinical TB-inactive. A further 83 (33.2%) had other lung parenchymal abnormalities and 108 (43.2%) had normal lungs. Over 1107-person years of follow-up 14 cases of culture-positive TB were diagnosed. Six cases were detected by intensive baseline screening, all would have been missed by the South African symptom-based screening strategy and only one detected by a WHO-recommended chest X-Ray screening strategy. Those with baseline Subclinical TB lesions on PET/CT were significantly more likely to be diagnosed with culture-positive TB over the study period, compared to those with normal lung parenchyma (10/29 [34.5%] vs 2/108 [1.9%], Hazard Ratio 22.37 [4.89-102.47, p<0.001]). Conclusions: These findings challenge the latent/active TB paradigm demonstrating that subclinical disease exists up to 4 years prior to microbiological detection and/or symptom onset. There are important implications for screening and management of TB.

4.
J Clin Tuberc Other Mycobact Dis ; 31: 100362, 2023 May.
Article in English | MEDLINE | ID: mdl-37006993

ABSTRACT

Background: The NOVA Tuberculosis Total Antibody Rapid Test is a commercially available lateral flow serological assay that is intended to be used as an aid in the diagnosis of tuberculosis. We conducted a study to estimate diagnostic accuracy of this assay for diagnosis of active pulmonary tuberculosis disease and for detection of M. tuberculosis infection. Methods: This study used existing frozen plasma specimens that had been obtained previously from consenting HIV-negative adults in Cambodia, South Africa, and Vietnam whose tuberculosis status was rigorously characterized using sputum mycobacterial cultures and blood interferon gamma release assay. The investigational assay was performed in a single laboratory by laboratory staff specifically trained to conduct the assays according to the manufacturer's procedures. In addition, intensity of the test band was subjectively assessed. Results: Plasma specimens from 150 participants were tested. All testing attempts yielded a determinate result of either positive or negative. For diagnosis of active pulmonary tuberculosis disease, test sensitivity and specificity were 40.0 % (20/50, 95 % confidence interval [CI] 27.6 % to 53.8 %) and 85.0 % (95 % CI 76.7 % to 90.7 %), respectively. For detection of M. tuberculosis infection, test sensitivity and specificity were 28.0 % (95 % CI 20.5 % to 37.2 %) and 86.0 % (95 % CI 73.8 % to 93.0 %), respectively. Among the 35 positive tests, no statistically significant band intensity trend was found across participant groups (p = 0.17). Conclusion: Study findings do not support a role for the NOVA Tuberculosis Test in current tuberculosis diagnostic algorithms.

5.
PLoS One ; 18(3): e0282708, 2023.
Article in English | MEDLINE | ID: mdl-36928472

ABSTRACT

Saliva has been a COVID-19 diagnostic specimen of interest due to its simple collection, scalability, and yield. Yet COVID-19 testing and estimates of the infectious period remain largely based on nasopharyngeal and nasal swabs. We sought to evaluate whether saliva testing captured prolonged presence of SARS-CoV-2 and potential infectiousness later in the disease course. We conducted an observational study of symptomatic COVID-19 patients at University Hospital in Newark, NJ. Paired saliva and nasal specimens from 96 patients were analyzed, including longitudinal analysis of paired observations from 28 of these patients who had multiple time-points. Saliva detected significantly more cases of COVID-19 beyond 5 days (86.1% [99/115] saliva vs 48.7% [56/115] nasal, p-value < 0.001), 9 days (79.4% [50/63] saliva vs 36.5% [23/63] nasal, p-value < 0.001) and 14 days (71.4% [20/28] saliva vs 32.1% [9/28] nasal, p-value = 0.010) of symptoms. Additionally, saliva yielded lower cycle thresholds across all time periods, indicative of higher viral loads in saliva. In the longitudinal analysis, a log-rank analysis indicated that the survival curve for saliva was significantly different from the curve for nasal swabs (p<0.001) with a median survival time for saliva of 18 days compared to 13 days for nasal swabs. We additionally performed saliva viral cultures among a similar COVID-19 patient cohort and noted patients with positive saliva viral cultures between 7 to 28 days of symptoms. Findings from this study suggest that SARS-CoV-2 RNA persists longer and in higher abundance in saliva compared to nasal swabs, with potential of prolonged propagating virus. Testing saliva may thus increase yield for detecting potentially infectious virus even beyond the first five days of symptomatic COVID-19.


Subject(s)
COVID-19 , Communicable Diseases , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19 Testing , Saliva , RNA, Viral/genetics , Specimen Handling , Nasopharynx
7.
mBio ; 13(6): e0279522, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36346244

ABSTRACT

Initial responses to tuberculosis treatment are poor predictors of final therapeutic outcomes in drug-susceptible disease, suggesting that treatment success depends on features that are hidden within a small minority of the overall infecting Mycobacterium tuberculosis population. We developed a multitranswell robotic system to perform numerous parallel cultures of genetically barcoded M. tuberculosis exposed to steady-state concentrations of rifampicin to uncover these difficult-to-eliminate minority populations. We found that tolerance emerged repeatedly from at least two subpopulations of barcoded cells, namely, one that could not grow on solid agar media and a second that could form colonies, but whose kill curves diverged from the general bacterial population within 4 and 16 days of drug exposure, respectively. These tolerant subpopulations reproducibly passed through a phase characterized by multiple unfixed resistance mutations followed by emergent drug resistance in some cultures. Barcodes associated with drug resistance identified an especially privileged subpopulation that was rarely eliminated despite 20 days of drug treatment even in cultures that did not contain any drug-resistant mutants. The association of this evolutionary scenario with a defined subset of barcodes across multiple independent cultures suggested a transiently heritable phenotype, and indeed, glpK phase variation mutants were associated with up to 16% of the resistant cultures. Drug tolerance and resistance were eliminated in a ΔruvA mutant, consistent with the importance of bacterial stress responses. This work provides a window into the origin and dynamics of bacterial drug-tolerant subpopulations whose elimination may be critical for developing rapid and resistance-free cures. IMPORTANCE Tuberculosis is unusual among bacterial diseases in that treatments which can rapidly resolve symptoms do not predictably lead to a durable cure unless treatment is continued for months after all clinical and microbiological signs of disease have been eradicated. Using a novel steady-state antibiotic exposure system combined with chromosomal barcoding, we identified small hidden Mycobacterium tuberculosis subpopulations that repeatedly enter a state of drug tolerance with a predisposition to develop fixed drug resistance after first developing a cloud of unfixed resistance mutations. The existence of these difficult-to-eradicate subpopulations may explain the need for extended treatment regimen for tuberculosis. Their identification provides opportunities to test genetic and therapeutic approaches that may result in shorter and more effective TB treatments.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Antitubercular Agents/pharmacology , Tuberculosis/microbiology , Rifampin/pharmacology , Drug Tolerance , Drug Resistance, Bacterial/genetics
8.
Nat Commun ; 13(1): 7068, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36400796

ABSTRACT

H37Rv is the most widely used Mycobacterium tuberculosis strain, and its genome is globally used as the M. tuberculosis reference sequence. Here, we present Bact-Builder, a pipeline that uses consensus building to generate complete and accurate bacterial genome sequences and apply it to three independently cultured and sequenced H37Rv aliquots of a single laboratory stock. Two of the 4,417,942 base-pair long H37Rv assemblies are 100% identical, with the third differing by a single nucleotide. Compared to the existing H37Rv reference, the new sequence contains ~6.4 kb additional base pairs, encoding ten new regions that include insertions in PE/PPE genes and new paralogs of esxN and esxJ, which are differentially expressed compared to the reference genes. New sequencing and de novo assemblies with Bact-Builder confirm that all 10 regions, plus small additional polymorphisms, are also present in the commonly used H37Rv strains NR123, TMC102, and H37Rv1998. Thus, Bact-Builder shows promise as an improved method to perform accurate and reproducible de novo assemblies of bacterial genomes, and our work provides important updates to the primary M. tuberculosis reference genome.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Genome, Bacterial/genetics , Polymorphism, Genetic , Tuberculosis/genetics
9.
Cell Biosci ; 12(1): 88, 2022 Jun 11.
Article in English | MEDLINE | ID: mdl-35690792

ABSTRACT

BACKGROUND: An animal model that can mimic the SARS-CoV-2 infection in humans is critical to understanding the rapidly evolving SARS-CoV-2 virus and for development of prophylactic and therapeutic strategies to combat emerging mutants. Studies show that the spike proteins of SARS-CoV and SARS-CoV-2 bind to human angiotensin-converting enzyme 2 (hACE2, a well-recognized, functional receptor for SARS-CoV and SARS-CoV-2) to mediate viral entry. Several hACE2 transgenic (hACE2Tg) mouse models are being widely used, which are clearly invaluable. However, the hACE2Tg mouse model cannot fully explain: (1) low expression of ACE2 observed in human lung and heart, but lung or heart failure occurs frequently in severe COVID-19 patients; (2) low expression of ACE2 on immune cells, but lymphocytopenia occurs frequently in COVID-19 patients; and (3) hACE2Tg mice do not mimic the natural course of SARS-CoV-2 infection in humans. Moreover, one of most outstanding features of coronavirus infection is the diversity of receptor usage, which includes the newly proposed human CD147 (hCD147) as a possible co-receptor for SARS-CoV-2 entry. It is still debatable whether CD147 can serve as a functional receptor for SARS-CoV-2 infection or entry. RESULTS: Here we successfully generated a hCD147 knock-in mouse model (hCD147KI) in the NOD-scid IL2Rgammanull (NSG) background. In this hCD147KI-NSG mouse model, the hCD147 genetic sequence was placed downstream of the endogenous mouse promoter for mouse CD147 (mCD147), which creates an in vivo model that may better recapitulate physiological expression of hCD147 proteins at the molecular level compared to the existing and well-studied K18-hACE2-B6 (JAX) model. In addition, the hCD147KI-NSG mouse model allows further study of SARS-CoV-2 in the immunodeficiency condition which may assist our understanding of this virus in the context of high-risk populations in immunosuppressed states. Our data show (1) the human CD147 protein is expressed in various organs (including bronchiolar epithelial cells) in hCD147KI-NSG mice by immunohistochemical staining and flow cytometry; (2) hCD147KI-NSG mice are marginally sensitive to SARS-CoV-2 infection compared to WT-NSG littermates characterized by increased viral copies by qRT-PCR and moderate body weight decline compared to baseline; (3) a significant increase in leukocytes in the lungs of hCD147KI-NSG mice, compared to infected WT-NSG mice. CONCLUSIONS: hCD147KI-NSG mice are more sensitive to COVID-19 infection compared to WT-NSG mice. The hCD147KI-NSG mouse model can serve as an additional animal model for further interrogation whether CD147 serve as an independent functional receptor or accessory receptor for SARS-CoV-2 entry and immune responses.

10.
Res Sq ; 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35475172

ABSTRACT

Background: An animal model that can mimic the SARS-CoV-2 infection in humans is critical to understanding the rapidly evolving SARS-CoV-2 virus and for development of prophylactic and therapeutic strategies to combat emerging mutants. Studies show that the spike proteins of SARS-CoV and SARS-CoV-2 bind to human angiotensin-converting enzyme 2 (hACE2, a well-recognized, functional receptor for SARS-CoV and SARS-CoV-2) to mediate viral entry. Several hACE2 transgenic (hACE2Tg) mouse models are being widely used, which are clearly invaluable. However, the hACE2Tg mouse model cannot fully explain: 1) low expression of ACE2 observed in human lung and heart, but lung or heart failure occurs frequently in severe COVID-19 patients; 2) low expression of ACE2 on immune cells, but lymphocytopenia occurs frequently in COVID-19 patients; and 3) hACE2Tg mice do not mimic the natural course of SARS-CoV-2 infection in humans. Moreover, one of most outstanding features of coronavirus infection is the diversity of receptor usage, which includes the newly proposed human CD147 (hCD147) as a possible co-receptor for SARS-CoV-2 entry. It is still debatable whether CD147 can serve as a functional receptor for SARS-CoV-2 infection or entry. Results: Here we successfully generated a hCD147 knock-in mouse model (hCD147KI) in the NOD- scid IL2Rgamma null (NSG) background. In this hCD147KI-NSG mouse model, the hCD147 genetic sequence was placed downstream of the endogenous mouse promoter for mouse CD147 (mCD147), which creates an in vivo model that may better recapitulate physiological expression of hCD147 proteins at the molecular level compared to the existing and well-studied K18-hACE2-B6 (JAX) model. In addition, the hCD147KI-NSG mouse model allows further study of SARS-CoV-2 in the immunodeficiency condition which may assist our understanding of this virus in the context of high-risk populations in immunosuppressed states. Our data show 1) the human CD147 protein is expressed in various organs (including bronchiolar epithelial cells) in hCD147KI-NSG mice by immunohistochemical staining and flow cytometry; 2) hCD147KI-NSG mice are marginally sensitive to SARS-CoV-2 infection compared to WT-NSG littermates characterized by increased viral copies by qRT-PCR and moderate body weight decline compared to baseline; 3) a significant increase in leukocytes in the lungs of hCD147KI-NSG mice, compared to infected WT-NSG mice. Conclusions: hCD147KI-NSG mice are more sensitive to COVID-19 infection compared to WT-NSG mice. The hCD147KI-NSG mouse model can serve as an additional animal model for further interrogation whether CD147 serve as an independent functional receptor or accessory receptor for SARS-CoV-2 entry and immune responses.

11.
BMC Infect Dis ; 22(1): 149, 2022 Feb 13.
Article in English | MEDLINE | ID: mdl-35152885

ABSTRACT

BACKGROUND: COVID-19 is a multi-system infection with emerging evidence-based antiviral and anti-inflammatory therapies to improve disease prognosis. However, a subset of patients with COVID-19 signs and symptoms have repeatedly negative RT-PCR tests, leading to treatment hesitancy. We used comparative serology early in the COVID-19 pandemic when background seroprevalence was low to estimate the likelihood of COVID-19 infection among RT-PCR negative patients with clinical signs and/or symptoms compatible with COVID-19. METHODS: Between April and October 2020, we conducted serologic testing of patients with (i) signs and symptoms of COVID-19 who were repeatedly negative by RT-PCR ('Probables'; N = 20), (ii) signs and symptoms of COVID-19 but with a potential alternative diagnosis ('Suspects'; N = 15), (iii) no signs and symptoms of COVID-19 ('Non-suspects'; N = 43), (iv) RT-PCR confirmed COVID-19 patients (N = 40), and (v) pre-pandemic samples (N = 55). RESULTS: Probables had similar seropositivity and levels of IgG and IgM antibodies as propensity-score matched RT-PCR confirmed COVID-19 patients (60.0% vs 80.0% for IgG, p-value = 0.13; 50.0% vs 72.5% for IgM, p-value = 0.10), but multi-fold higher seropositivity rates than Suspects and matched Non-suspects (60.0% vs 13.3% and 11.6% for IgG; 50.0% vs 0% and 4.7% for IgM respectively; p-values < 0.01). However, Probables were half as likely to receive COVID-19 treatment than the RT-PCR confirmed COVID-19 patients with similar disease severity. CONCLUSIONS: Findings from this study indicate a high likelihood of acute COVID-19 among RT-PCR negative with typical signs/symptoms, but a common omission of COVID-19 therapies among these patients. Clinically diagnosed COVID-19, independent of RT-PCR positivity, thus has a potential vital role in guiding treatment decisions.


Subject(s)
COVID-19 Drug Treatment , Antibodies, Viral , Humans , Immunoglobulin M , Pandemics , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Seroepidemiologic Studies
12.
J Med Microbiol ; 70(9)2021 Sep.
Article in English | MEDLINE | ID: mdl-34486972

ABSTRACT

Introduction. Non-invasive sample collection and viral sterilizing buffers have independently enabled workflows for more widespread COVID-19 testing by reverse-transcriptase polymerase chain reaction (RT-PCR).Gap statement. The combined use of sterilizing buffers across non-invasive sample types to optimize sensitive, accessible, and biosafe sampling methods has not been directly and systematically compared.Aim. We aimed to evaluate diagnostic yield across different non-invasive samples with standard viral transport media (VTM) versus a sterilizing buffer eNAT- (Copan diagnostics Murrieta, CA) in a point-of-care diagnostic assay system.Methods. We prospectively collected 84 sets of nasal swabs, oral swabs, and saliva, from 52 COVID-19 RT-PCR-confirmed patients, and nasopharyngeal (NP) swabs from 37 patients. Nasal swabs, oral swabs, and saliva were placed in either VTM or eNAT, prior to testing with the Xpert Xpress SARS-CoV-2 (Xpert). The sensitivity of each sampling strategy was compared using a composite positive standard.Results. Swab specimens collected in eNAT showed an overall superior sensitivity compared to swabs in VTM (70 % vs 57 %, P=0.0022). Direct saliva 90.5 %, (95 % CI: 82 %, 95 %), followed by NP swabs in VTM and saliva in eNAT, was significantly more sensitive than nasal swabs in VTM (50 %, P<0.001) or eNAT (67.8 %, P=0.0012) and oral swabs in VTM (50 %, P<0.0001) or eNAT (58 %, P<0.0001). Saliva and use of eNAT buffer each increased detection of SARS-CoV-2 with the Xpert; however, no single sample matrix identified all positive cases.Conclusion. Saliva and eNAT sterilizing buffer can enhance safe and sensitive detection of COVID-19 using point-of-care GeneXpert instruments.


Subject(s)
COVID-19 Nucleic Acid Testing , Specimen Handling/methods , Adult , Aged , COVID-19/diagnosis , Containment of Biohazards , Culture Media , Female , Humans , Male , Middle Aged , Mouth/virology , Nasopharynx/virology , Nose/virology , Point-of-Care Testing , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Saliva/virology , Sensitivity and Specificity , Specimen Handling/standards
13.
Nat Commun ; 12(1): 4702, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34349104

ABSTRACT

Mycobacterium tuberculosis can adapt to changing environments by non-heritable mechanisms. Frame-shifting insertions and deletions (indels) may also participate in adaptation through gene disruption, which could be reversed by secondary introduction of a frame-restoring indel. We present ScarTrek, a program that scans genomic data for indels, including those that together disrupt and restore a gene's reading frame, producing "frame-shift scars" suggestive of reversible gene inactivation. We use ScarTrek to analyze 5977 clinical M. tuberculosis isolates. We show that indel frequency inversely correlates with genomic linguistic complexity and varies with gene-position and gene-essentiality. Using ScarTrek, we detect 74 unique frame-shift scars in 48 genes, with a 3.74% population-level incidence of unique scar events. We find multiple scars in the ESX-1 gene cluster. Six scars show evidence of convergent evolution while the rest shared a common ancestor. Our results suggest that sequential indels are a mechanism for reversible gene silencing and adaptation in M. tuberculosis.


Subject(s)
Adaptation, Physiological/genetics , Gene Silencing , Mycobacterium tuberculosis/genetics , Reading Frames/genetics , Evolution, Molecular , Genes, Bacterial/genetics , Genome, Bacterial/genetics , Humans , INDEL Mutation , Mycobacterium tuberculosis/isolation & purification , Tuberculosis/microbiology
14.
J Clin Microbiol ; 59(10): e0084521, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34288729

ABSTRACT

The increased transmission of SARS-CoV-2 variants of concern (VOC), which originated in the United Kingdom (B.1.1.7/alpha), South Africa (B1.351/beta), Brazil (P.1/gamma), the United States (B.1.427/429 or epsilon), and India (B.1.617.2/delta), requires a vigorous public health response, including real-time strain surveillance on a global scale. Although genome sequencing is the gold standard for identifying these VOCs, it is time-consuming and expensive. Here, we describe a simple, rapid, and high-throughput reverse transcriptase PCR (RT-PCR) melting-temperature (Tm) screening assay that identifies the first three major VOCs. RT-PCR primers and four sloppy molecular beacon (SMB) probes were designed to amplify and detect the SARS-CoV-2 N501Y (A23063T) and E484K (G23012A) mutations and their corresponding wild-type sequences. After RT-PCR, the VOCs were identified by a characteristic Tm of each SMB. Assay optimization and testing was performed with RNA from SARS-CoV-2 USA WA1/2020 (wild type [WT]), B.1.1.7, and B.1.351 variant strains. The assay was then validated using clinical samples. The limit of detection for both the WT and variants was 4 and 10 genomic copies/reaction for the 501- and 484-codon assays, respectively. The assay was 100% sensitive and 100% specific for identifying the N501Y and E484K mutations in cultured virus and in clinical samples, as confirmed by Sanger sequencing. We have developed an RT-PCR melt screening test for the major VOCs that can be used to rapidly screen large numbers of patient samples, providing an early warning for the emergence of these variants and a simple way to track their spread.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Reverse Transcriptase Polymerase Chain Reaction , Temperature
15.
PLoS One ; 16(6): e0252687, 2021.
Article in English | MEDLINE | ID: mdl-34115762

ABSTRACT

BACKGROUND: Upper respiratory samples used to test for SARS-CoV-2 virus may be infectious and present a hazard during transport and testing. A buffer with the ability to inactivate SARS-CoV-2 at the time of sample collection could simplify and expand testing for COVID-19 to non-conventional settings. METHODS: We evaluated a guanidium thiocyanate-based buffer, eNAT™ (Copan) as a possible transport and inactivation medium for downstream Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) testing to detect SARS-CoV-2. Inactivation of SARS-CoV-2 USA-WA1/2020 in eNAT and in diluted saliva was studied at different incubation times. The stability of viral RNA in eNAT was also evaluated for up to 7 days at room temperature (28°C), refrigerated conditions (4°C) and at 35°C. RESULTS: SARS-COV-2 virus spiked directly in eNAT could be inactivated at >5.6 log10 PFU/ml within a minute of incubation. When saliva was diluted 1:1 in eNAT, no cytopathic effect (CPE) on VeroE6 cells was observed, although SARS-CoV-2 RNA could be detected even after 30 min incubation and after two cell culture passages. A 1:2 (saliva:eNAT) dilution abrogated both CPE and detectable viral RNA after as little as 5 min incubation in eNAT. SARS-CoV-2 RNA from virus spiked at 5X the limit of detection remained positive up to 7 days of incubation in all tested conditions. CONCLUSION: eNAT and similar guanidinium thiocyanate-based media may be of value for transport, stabilization, and processing of clinical samples for RT-PCR based SARS-CoV-2 detection.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Guanidine/pharmacology , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Saliva/drug effects , Saliva/virology , Specimen Handling/methods , Virus Inactivation/drug effects , Animals , COVID-19/virology , Chlorocebus aethiops , Culture Media , Healthy Volunteers , Humans , RNA, Viral/genetics , Vero Cells
16.
medRxiv ; 2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33758892

ABSTRACT

BACKGROUND: The increased transmission of SARS-CoV-2 variants of concern (VOC) which originated in the United Kingdom (B.1.1.7), South Africa (B1.351), Brazil (P.1) and in United States (B.1.427/429) requires a vigorous public health response, including real time strain surveillance on a global scale. Although genome sequencing is the gold standard for identifying these VOCs, it is time consuming and expensive. Here, we describe a simple, rapid and high-throughput reverse-transcriptase PCR (RT-PCR) melting temperature (Tm) screening assay that identifies these three major VOCs. METHODS: RT-PCR primers and four sloppy molecular beacon (SMB) probes were designed to amplify and detect the SARS-CoV-2 N501Y (A23063T) and E484K (G23012A) mutations and their corresponding wild type sequences. After RT-PCR, the VOCs were identified by a characteristic Tm of each SMB. Assay optimization and testing was performed with RNA from SARS-CoV-2 USA WA1/2020 (WT), a B.1.17 and a B.1.351 variant strains. The assay was then validated using clinical samples. RESULTS: The limit of detection (LOD) for both the WT and variants was 4 and 10 genomic copies/reaction for the 501 and 484 codon assays, respectively. The assay was 100% sensitive and 100% specific for identifying the N501Y and E484K mutations in cultured virus and in clinical samples as confirmed by Sanger sequencing. CONCLUSION: We have developed an RT-PCR melt screening test for the three major VOCs which can be used to rapidly screen large numbers of patient samples providing an early warning for the emergence of these variants and a simple way to track their spread.

17.
medRxiv ; 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33688680

ABSTRACT

Sensitive, accessible, and biosafe sampling methods for COVID-19 reverse-transcriptase polymerase chain reaction (RT-PCR) assays are needed for frequent and widespread testing. We systematically evaluated diagnostic yield across different sample collection and transport workflows, including the incorporation of a viral inactivation buffer. We prospectively collected nasal swabs, oral swabs, and saliva, from 52 COVID-19 RT-PCR-confirmed patients, and nasopharyngeal (NP) swabs from 37 patients. Nasal and oral swabs were placed in both viral transport media (VTM) and eNAT™, a sterilizing transport buffer, prior to testing with the Xpert Xpress SARS-CoV-2 (Xpert) test. The sensitivity of each sampling strategy was compared using a composite positive standard. Overall, swab specimens collected in eNAT showed superior sensitivity compared to swabs in VTM (70% vs 57%, P=0.0022). Direct saliva 90.5%, (95% CI: 82%, 95%), followed by NP swabs in VTM and saliva in eNAT, was significantly more sensitive than nasal swabs in VTM (50%, P<0.001) or eNAT (67.8%, P=0.0012) and oral swabs in VTM (50%, P<0.0001) or eNAT (56%, P<0.0001). Saliva and use of eNAT buffer each increased detection of SARS-CoV-2 with the Xpert test; however, no single sample matrix identified all positive cases.

18.
medRxiv ; 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33501462

ABSTRACT

BACKGROUND: Upper respiratory samples used to test for SARS-CoV-2 virus may be infectious and present a hazard during transport and testing. A buffer with the ability to inactivate SARS-CoV-2 at the time of sample collection could simplify and expand testing for COVID-19 to non-conventional settings. METHODS: We evaluated a guanidium thiocyanate-based buffer, eNAT™ (Copan) as a possible transport and inactivation medium for downstream RT-PCR testing to detect SARS-CoV-2. Inactivation of SARS-CoV-2 USA-WA1/2020 in eNAT and in diluted saliva was studied at different incubation times. The stability of viral RNA in eNAT was also evaluated for up to 7 days at room temperature (28°C), refrigerated conditions (4°C) and at 35°C. RESULTS: SARS-COV-2 virus spiked directly in eNAT could be inactivated at >5.6 log 10 PFU/ml within a minute of incubation. When saliva was diluted 1:1 in eNAT, no cytopathic effect (CPE) on vero-E6 cell lines was observed, although SARS-CoV-2 RNA could be detected even after 30 min incubation and after two cell culture passages. A 1:2 (saliva:eNAT) dilution abrogated both CPE and detectable viral RNA after as little as 5 min incubation in eNAT. SARS-CoV-2 RNA from virus spiked at 5X the limit of detection remained positive up to 7 days of incubation in all tested conditions. CONCLUSION: eNAT and similar guanidinium thiocyanate-based media may be of value for transport, preservation, and processing of clinical samples for RT-PCR based SARS-CoV-2 detection.

19.
J Clin Microbiol ; 59(3)2021 02 18.
Article in English | MEDLINE | ID: mdl-33298611

ABSTRACT

We describe the design, development, analytical performance, and a limited clinical evaluation of the 10-color Xpert MTB/XDR assay (CE-IVD only, not for sale in the United States). This assay is intended as a reflex test to detect resistance to isoniazid (INH), fluoroquinolones (FLQ), ethionamide (ETH), and second-line injectable drugs (SLIDs) in unprocessed sputum samples and concentrated sputum sediments which are positive for Mycobacterium tuberculosis The Xpert MTB/XDR assay simultaneously amplifies eight genes and promoter regions in M. tuberculosis and analyzes melting temperatures (Tm s) using sloppy molecular beacon (SMB) probes to identify mutations associated with INH, FLQ, ETH, and SLID resistance. Results can be obtained in under 90 min using 10-color GeneXpert modules. The assay can differentiate low- versus high-level resistance to INH and FLQ as well as cross-resistance versus individual resistance to SLIDs by identifying mutation-specific Tm s or Tm patterns generated by the SMB probes. The assay has a limit of detection comparable to that of the Xpert MTB/RIF assay and successfully detected 16 clinically significant mutations in a challenge set of clinical isolate DNA. In a clinical study performed at two sites with 100 sputum and 214 clinical isolates, the assay showed a sensitivity of 94% to 100% and a specificity of 100% for all drugs except for ETH compared to that of sequencing. The sensitivity and specificity were in the same ranges as those of phenotypic drug-susceptibility testing. Used in combination with a primary tuberculosis diagnostic test, this assay should expand the capacity for detection of drug-resistant tuberculosis near the point of care.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Diagnostic Tests, Routine , Drug Resistance , Drug Resistance, Bacterial , Fluoroquinolones/pharmacology , Humans , Isoniazid/pharmacology , Microbial Sensitivity Tests , Mycobacterium tuberculosis/genetics , Point-of-Care Systems , Reflex , Rifampin , Sensitivity and Specificity , Sputum , Tuberculosis, Multidrug-Resistant/diagnosis
20.
Nat Commun ; 11(1): 4870, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32978384

ABSTRACT

Little is known about the physiology of latent Mycobacterium tuberculosis infection. We studied the mutational rates of 24 index tuberculosis (TB) cases and their latently infected household contacts who developed active TB up to 5.25 years later, as an indication of bacterial physiological state and possible generation times during latent TB infection in humans. Here we report that the rate of new mutations in the M. tuberculosis genome decline dramatically after two years of latent infection (two-sided p < 0.001, assuming an 18 h generation time equal to log phase M. tuberculosis, with latency period modeled as a continuous variable). Alternatively, assuming a fixed mutation rate, the generation time increases over the latency duration. Mutations indicative of oxidative stress do not increase with increasing latency duration suggesting a lack of host or bacterial derived mutational stress. These results suggest that M. tuberculosis enters a quiescent state during latency, decreasing the risk for mutational drug resistance and increasing generation time, but potentially increasing bacterial tolerance to drugs that target actively growing bacteria.


Subject(s)
Latent Tuberculosis/microbiology , Mutation Rate , Mycobacterium tuberculosis/genetics , Tuberculosis/microbiology , Adult , Brazil , DNA, Bacterial/isolation & purification , Female , Genome, Bacterial , Humans , Male , Mutation , Mycobacterium tuberculosis/pathogenicity , Oxidative Stress , Phylogeny , Polymorphism, Single Nucleotide , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...