Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Med Chem Lett ; 12(3): 443-450, 2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33732413

ABSTRACT

While the discovery of immune checkpoint inhibitors has led to robust, durable responses in a range of cancers, many patients do not respond to currently available therapeutics. Therefore, an urgent need exists to identify alternative mechanisms to augment the immune-mediated clearance of tumors. Hematopoetic progenitor kinase 1 (HPK1) is a serine-threonine kinase that acts as a negative regulator of T-cell receptor (TCR) signaling, to dampen the immune response. Herein we describe the structure-based discovery of isofuranones as inhibitors of HPK1. Optimization of the chemotype led to improvements in potency, selectivity, plasma protein binding, and metabolic stability, culminating in the identification of compound 24. Oral administration of 24, in combination with an anti-PD1 antibody, demonstrated robust enhancement of anti-PD1 efficacy in a syngeneic tumor model of colorectal cancer.

2.
Bioorg Med Chem Lett ; 30(21): 127516, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32860982

ABSTRACT

The design, synthesis and structure-activity relationships associated with a series of C2-substituted pyrazolopyrimidines as potent allosteric inhibitors of HIV-1 integrase (ALLINIs) are described. Structural modifications to these molecules were made in order to examine the effect on potency and, for select compounds, pharmacokinetic properties. We examined a variety of C2-substituted pyrazolopyrimidines and found that the C2-amide derivatives demonstrated the most potent antiviral activity of this class against HIV-1 infection in cell culture.


Subject(s)
Amides/pharmacology , Anti-HIV Agents/pharmacology , HIV Integrase Inhibitors/pharmacology , HIV Integrase/metabolism , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Allosteric Regulation/drug effects , Amides/chemical synthesis , Amides/chemistry , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/chemistry , Cells, Cultured , Dose-Response Relationship, Drug , Drug Design , HIV Integrase Inhibitors/chemical synthesis , HIV Integrase Inhibitors/chemistry , HIV-1/drug effects , HIV-1/metabolism , Humans , Microbial Sensitivity Tests , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship
3.
J Med Chem ; 62(3): 1348-1361, 2019 02 14.
Article in English | MEDLINE | ID: mdl-30609350

ABSTRACT

A series of 5,6,7,8-tetrahydro-1,6-naphthyridine derivatives targeting the allosteric lens-epithelium-derived-growth-factor-p75 (LEDGF/p75)-binding site on HIV-1 integrase, an attractive target for antiviral chemotherapy, was prepared and screened for activity against HIV-1 infection in cell culture. Small molecules that bind within the LEDGF/p75-binding site promote aberrant multimerization of the integrase enzyme and are of significant interest as HIV-1-replication inhibitors. Structure-activity-relationship studies and rat pharmacokinetic studies of lead compounds are presented.


Subject(s)
HIV Integrase Inhibitors/pharmacology , HIV-1/drug effects , Naphthyridines/pharmacology , Allosteric Site , Crystallography, X-Ray , HIV Infections/drug therapy , HIV Integrase Inhibitors/chemistry , HIV Integrase Inhibitors/therapeutic use , HIV-1/enzymology , HIV-1/physiology , Humans , Naphthyridines/chemistry , Naphthyridines/therapeutic use , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...