Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Nature ; 623(7988): 828-835, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37968399

ABSTRACT

The skin epidermis is constantly renewed throughout life1,2. Disruption of the balance between renewal and differentiation can lead to uncontrolled growth and tumour initiation3. However, the ways in which oncogenic mutations affect the balance between renewal and differentiation and lead to clonal expansion, cell competition, tissue colonization and tumour development are unknown. Here, through multidisciplinary approaches that combine in vivo clonal analysis using intravital microscopy, single-cell analysis and functional analysis, we show how SmoM2-a constitutively active oncogenic mutant version of Smoothened (SMO) that induces the development of basal cell carcinoma-affects clonal competition and tumour initiation in real time. We found that expressing SmoM2 in the ear epidermis of mice induced clonal expansion together with tumour initiation and invasion. By contrast, expressing SmoM2 in the back-skin epidermis led to a clonal expansion that induced lateral cell competition without dermal invasion and tumour formation. Single-cell analysis showed that oncogene expression was associated with a cellular reprogramming of adult interfollicular cells into an embryonic hair follicle progenitor (EHFP) state in the ear but not in the back skin. Comparisons between the ear and the back skin revealed that the dermis has a very different composition in these two skin types, with increased stiffness and a denser collagen I network in the back skin. Decreasing the expression of collagen I in the back skin through treatment with collagenase, chronic UV exposure or natural ageing overcame the natural resistance of back-skin basal cells to undergoing EHFP reprogramming and tumour initiation after SmoM2 expression. Altogether, our study shows that the composition of the extracellular matrix regulates how susceptible different regions of the body are to tumour initiation and invasion.


Subject(s)
Cell Transformation, Neoplastic , Extracellular Matrix , Skin Neoplasms , Tumor Microenvironment , Animals , Mice , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Collagen/metabolism , Epidermis/pathology , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Skin Neoplasms/pathology , Carcinoma, Basal Cell/pathology , Ear/pathology , Collagenases/metabolism , Aging , Ultraviolet Rays , Mutant Proteins/genetics , Mutant Proteins/metabolism
2.
Respir Res ; 24(1): 254, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37880678

ABSTRACT

BACKGROUND: Fibroblast activation protein-α (FAPα) is a marker of activated fibroblasts that can be selectively targeted by an inhibitor (FAPI) and visualised by PET/CT imaging. We evaluated whether the measurement of FAPα in bronchoalveolar lavage fluids (BALF) and the uptake of FAPI by PET/CT could be used as biomarkers of fibrogenesis. METHODS: The dynamics of lung uptake of 18F-labeled FAPI ([18F]FAPI-74) was assessed in the bleomycin mouse model at various time points and using different concentrations of bleomycin by PET/CT. FAPα was measured in BALFs from these bleomycin-treated and control mice. FAPα levels were also assessed in BALFs from controls and patients with idiopathic pulmonary fibrosis (IPF). RESULTS: Bleomycin-treated mice presented a significantly higher uptake of [18F]FAPI-74 during lung fibrinogenesis (days 10 and 16 after instillation) compared to control mice. No significant difference was observed at initial inflammatory phase (3 days) and when fibrosis was already established (28 days). [18F]FAPI-74 tracer was unable to show a dose-response to bleomycin treatment. On the other hand, BALF FAPα levels were steeply higher in bleomycin-treated mice at day 10 and a significant dose-response effect was observed. Moreover, FAPα levels were strongly correlated with lung fibrosis as measured by the modified Aschroft histological analysis, hydroxyproline and the percentage of weight loss. Importantly, higher levels of FAPα were observed in IPF patients where the disease was progressing as compared to stable patients and controls. Moreover, patients with FAPα BALF levels higher than 192.5 pg/mL presented a higher risk of progression, transplantation or death compared to patients with lower levels. CONCLUSIONS: Our preclinical data highlight a specific increase of [18F]FAPI-74 lung uptake during the fibrotic phase of the bleomycin murine model. The measurement of FAPα in BALF appears to be a promising marker of the fibrotic activity in preclinical models of lung fibrosis and in IPF patients. Further studies are required to confirm the role of FAPα in BALF as biomarker of IPF activity and assess the relationship between FAPα levels in BALF and [18F]FAPI-74 uptake on PET/CT in patients with fibrotic lung disease.


Subject(s)
Idiopathic Pulmonary Fibrosis , Positron Emission Tomography Computed Tomography , Humans , Mice , Animals , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/diagnostic imaging , Idiopathic Pulmonary Fibrosis/drug therapy , Fibrosis , Bronchoalveolar Lavage Fluid , Bleomycin/adverse effects
3.
Clin Kidney J ; 16(10): 1664-1673, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37779855

ABSTRACT

Background: Acute kidney injury (AKI) requiring renal replacement therapy (RRT) in the intensive care unit (ICU) portends a poor prognosis. We aimed to better characterize predictors of survival and the mechanism of kidney failure in these patients. Methods: This was a retrospective observational study using clinical and radiological electronic health records, analysed by univariable and multivariable binary logistic regression. Histopathological examination of post-mortem renal tissue was performed. Results: Among 157 patients with AKI requiring RRT, higher serum creatinine at RRT initiation associated with increased ICU survival [odds ratio (OR) 0.33, 95% confidence interval (CI) 0.17-0.62, P = .001]; however, muscle mass (a marker of frailty) interacted with creatinine (P = .02) and superseded creatinine as a predictor of survival (OR 0.26, 95% CI 0.08-0.82; P = .02). Achieving lower cumulative fluid balance (mL/kg) predicted ICU survival (OR 1.01, 95% CI 1.00-1.01, P < .001), as supported by sensitivity analyses showing improved ICU survival with the use of furosemide (OR 0.40, 95% CI 0.18-0.87, P = .02) and increasing net ultrafiltration (OR 0.97, 95% CI 0.95-0.99, P = .02). A urine output of >500 mL/24 h strongly predicted successful liberation from RRT (OR 0.125, 95% CI 0.05-0.35, P < .001). Post-mortem reports were available for 32 patients; clinically unrecognized renal findings were described in 6 patients, 1 of whom had interstitial nephritis. Experimental staining of renal tissue from patients with sepsis-associated AKI (S-AKI) showed glomerular loss of synaptopodin (P = .02). Conclusions: Confounding of creatinine by muscle mass undermines its use as a marker of AKI severity in clinical studies. Volume management and urine output are key determinants of outcome. Loss of synaptopodin implicates glomerular injury in the pathogenesis of S-AKI.

4.
Nature ; 620(7973): 402-408, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37532929

ABSTRACT

Epithelial-to-mesenchymal transition (EMT) regulates tumour initiation, progression, metastasis and resistance to anti-cancer therapy1-7. Although great progress has been made in understanding the role of EMT and its regulatory mechanisms in cancer, no therapeutic strategy to pharmacologically target EMT has been identified. Here we found that netrin-1 is upregulated in a primary mouse model of skin squamous cell carcinoma (SCC) exhibiting spontaneous EMT. Pharmacological inhibition of netrin-1 by administration of NP137, a netrin-1-blocking monoclonal antibody currently used in clinical trials in human cancer (ClinicalTrials.gov identifier NCT02977195 ), decreased the proportion of EMT tumour cells in skin SCC, decreased the number of metastases and increased the sensitivity of tumour cells to chemotherapy. Single-cell RNA sequencing revealed the presence of different EMT states, including epithelial, early and late hybrid EMT, and full EMT states, in control SCC. By contrast, administration of NP137 prevented the progression of cancer cells towards a late EMT state and sustained tumour epithelial states. Short hairpin RNA knockdown of netrin-1 and its receptor UNC5B in EPCAM+ tumour cells inhibited EMT in vitro in the absence of stromal cells and regulated a common gene signature that promotes tumour epithelial state and restricts EMT. To assess the relevance of these findings to human cancers, we treated mice transplanted with the A549 human cancer cell line-which undergoes EMT following TGFß1 administration8,9-with NP137. Netrin-1 inhibition decreased EMT in these transplanted A549 cells. Together, our results identify a pharmacological strategy for targeting EMT in cancer, opening up novel therapeutic interventions for anti-cancer therapy.


Subject(s)
Antibodies, Monoclonal , Carcinoma, Squamous Cell , Epithelial-Mesenchymal Transition , Netrin-1 , Skin Neoplasms , Animals , Humans , Mice , A549 Cells , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Epithelial-Mesenchymal Transition/drug effects , Netrin Receptors/antagonists & inhibitors , Netrin Receptors/deficiency , Netrin Receptors/genetics , Netrin-1/antagonists & inhibitors , Netrin-1/deficiency , Netrin-1/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , Disease Models, Animal , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Neoplasm Metastasis/drug therapy , Single-Cell Gene Expression Analysis , RNA-Seq , Epithelial Cell Adhesion Molecule/metabolism , Xenograft Model Antitumor Assays , Transforming Growth Factor beta1/pharmacology
5.
Nature ; 620(7973): 409-416, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37532934

ABSTRACT

Netrin-1 is upregulated in cancers as a protumoural mechanism1. Here we describe netrin-1 upregulation in a majority of human endometrial carcinomas (ECs) and demonstrate that netrin-1 blockade, using an anti-netrin-1 antibody (NP137), is effective in reduction of tumour progression in an EC mouse model. We next examined the efficacy of NP137, as a first-in-class single agent, in a Phase I trial comprising 14 patients with advanced EC. As best response we observed 8 stable disease (8 out of 14, 57.1%) and 1 objective response as RECIST v.1.1 (partial response, 1 out of 14 (7.1%), 51.16% reduction in target lesions at 6 weeks and up to 54.65% reduction during the following 6 months). To evaluate the NP137 mechanism of action, mouse tumour gene profiling was performed, and we observed, in addition to cell death induction, that NP137 inhibited epithelial-to-mesenchymal transition (EMT). By performing bulk RNA sequencing (RNA-seq), spatial transcriptomics and single-cell RNA-seq on paired pre- and on-treatment biopsies from patients with EC from the NP137 trial, we noted a net reduction in tumour EMT. This was associated with changes in immune infiltrate and increased interactions between cancer cells and the tumour microenvironment. Given the importance of EMT in resistance to current standards of care2, we show in the EC mouse model that a combination of NP137 with carboplatin-paclitaxel outperformed carboplatin-paclitaxel alone. Our results identify netrin-1 blockade as a clinical strategy triggering both tumour debulking and EMT inhibition, thus potentially alleviating resistance to standard treatments.


Subject(s)
Endometrial Neoplasms , Epithelial-Mesenchymal Transition , Netrin-1 , Animals , Female , Humans , Mice , Biopsy , Carboplatin/administration & dosage , Carboplatin/pharmacology , Carboplatin/therapeutic use , Disease Models, Animal , Drug Resistance, Neoplasm/drug effects , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/genetics , Endometrial Neoplasms/immunology , Endometrial Neoplasms/pathology , Epithelial-Mesenchymal Transition/drug effects , Gene Expression Profiling , Netrin-1/antagonists & inhibitors , Paclitaxel/administration & dosage , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , RNA-Seq , Single-Cell Gene Expression Analysis , Tumor Microenvironment/drug effects
6.
Acta Neuropathol Commun ; 11(1): 78, 2023 05 10.
Article in English | MEDLINE | ID: mdl-37165453

ABSTRACT

INTRODUCTION: COVID-19-infected patients harbour neurological symptoms such as stroke and anosmia, leading to the hypothesis that there is direct invasion of the central nervous system (CNS) by SARS-CoV-2. Several studies have reported the neuropathological examination of brain samples from patients who died from COVID-19. However, there is still sparse evidence of virus replication in the human brain, suggesting that neurologic symptoms could be related to mechanisms other than CNS infection by the virus. Our objective was to provide an extensive review of the literature on the neuropathological findings of postmortem brain samples from patients who died from COVID-19 and to report our own experience with 18 postmortem brain samples. MATERIAL AND METHODS: We used microscopic examination, immunohistochemistry (using two different antibodies) and PCR-based techniques to describe the neuropathological findings and the presence of SARS-CoV-2 virus in postmortem brain samples. For comparison, similar techniques (IHC and PCR) were applied to the lung tissue samples for each patient from our cohort. The systematic literature review was conducted from the beginning of the pandemic in 2019 until June 1st, 2022. RESULTS: In our cohort, the most common neuropathological findings were perivascular haemosiderin-laden macrophages and hypoxic-ischaemic changes in neurons, which were found in all cases (n = 18). Only one brain tissue sample harboured SARS-CoV-2 viral spike and nucleocapsid protein expression, while all brain cases harboured SARS-CoV-2 RNA positivity by PCR. A colocalization immunohistochemistry study revealed that SARS-CoV-2 antigens could be located in brain perivascular macrophages. The literature review highlighted that the most frequent neuropathological findings were ischaemic and haemorrhagic lesions, including hypoxic/ischaemic alterations. However, few studies have confirmed the presence of SARS-CoV-2 antigens in brain tissue samples. CONCLUSION: This study highlighted the lack of specific neuropathological alterations in COVID-19-infected patients. There is still no evidence of neurotropism for SARS-CoV-2 in our cohort or in the literature.


Subject(s)
COVID-19 , Nervous System Diseases , Humans , SARS-CoV-2 , RNA, Viral , Lung , Central Nervous System
7.
J Int Neuropsychol Soc ; 28(4): 424-440, 2022 04.
Article in English | MEDLINE | ID: mdl-33998437

ABSTRACT

OBJECTIVE: The term intellectually gifted (IG) refers to children of high intelligence, which is classically measured by the intelligence quotient (IQ). Some researchers assume that the cognitive profiles of these children are characterized by both strengths and weaknesses, compared with those of their typically developing (TD) peers of average IQ. The aim of the present systematic review was to verify this assumption, by compiling data from empirical studies of cognitive functions (language, motor skills, visuospatial processing, memory, attention and executive functions, social and emotional cognition) and academic performances. METHOD: The literature search yielded 658 articles, 15 of which met the selection criteria taken from the Preferred Reporting Items for Systematic Reviews and Meta-Analyses model. We undertook a qualitative summary, to highlight any discrepancies between cognitive functions. RESULTS: IG children exhibited better skills than TD children in a number of domains, including attention, language, mathematics, verbal working memory, shifting, and social problem solving. However, the two groups had comparable skills in visuospatial processing, memory, planning, inhibition, and visual working memory, or facial recognition. CONCLUSION: Although IG children may have some strengths, many studies have failed to find differences between this population and their TD peers on many other cognitive measures. Just like any other children, they can display learning disabilities, which can be responsible for academic underachievement. Further studies are needed to better understand this heterogeneity. The present review provides pointers for overcoming methodological problems and opens up new avenues for giftedness research.


Subject(s)
Child, Gifted , Child , Child, Gifted/psychology , Executive Function , Humans , Intelligence , Memory, Short-Term , Neuropsychological Tests , Problem Solving
8.
Nat Cancer ; 2(11): 1152-1169, 2021 11.
Article in English | MEDLINE | ID: mdl-35122061

ABSTRACT

The nongenetic mechanisms required to sustain malignant tumor state are poorly understood. During the transition from benign tumors to malignant carcinoma, tumor cells need to repress differentiation and acquire invasive features. Using transcriptional profiling of cancer stem cells from benign tumors and malignant skin squamous cell carcinoma (SCC), we identified the nuclear receptor NR2F2 as uniquely expressed in malignant SCC. Using genetic gain of function and loss of function in vivo, we show that NR2F2 is essential for promoting the malignant tumor state by controlling tumor stemness and maintenance in mouse and human SCC. We demonstrate that NR2F2 promotes tumor cell proliferation, epithelial-mesenchymal transition and invasive features, while repressing tumor differentiation and immune cell infiltration by regulating a common transcriptional program in mouse and human SCCs. Altogether, we identify NR2F2 as a key regulator of malignant cancer stem cell functions that promotes tumor renewal and restricts differentiation to sustain a malignant tumor state.


Subject(s)
Carcinoma, Squamous Cell , Skin Neoplasms , Animals , Carcinoma, Squamous Cell/genetics , Cell Differentiation/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Mice , Neoplastic Processes , Skin Neoplasms/genetics
9.
Front Oncol ; 10: 547013, 2020.
Article in English | MEDLINE | ID: mdl-33178579

ABSTRACT

Partial hepatectomy (PH) is the main treatment for early-stage hepatocellular carcinoma (HCC). Yet, a significant number of patients undergo recursion of the disease that could be linked to the fate of innate immune cells during the liver regeneration process. In this study, using a murine model, we investigated the impact of PH on HCC development by bioluminescence imaging and flow cytometry. While non-resected mice were able to control and reject orthotopic implanted Hepa1-6 hepatocarcinoma cells, resected liver underwent an increased tumoral proliferation. This phenomenon was associated with a PH-induced reduction in the number of liver-resident macrophages, i.e., Kupffer cells (KC). Using a conditional ablation model, KC were proved to participate in Hepa1-6 rejection. We demonstrated that in the absence of Hepa1-6, PH-induced KC number reduction was dependent on tumor necrosis factor-alpha (TNF-α), receptor-interacting protein kinase (RIPK) 3, and caspase-8 activation, whereas interleukin (IL)-6 acted as a KC pro-survival signal. In mice with previous Hepa1-6 encounter, the KC reduction switched toward a TNF-α-RIPK3-caspase-1 activation. Moreover, KC disappearance associated with caspase-1 activity induced the recruitment of monocyte-derived cells that are beneficial for tumor growth, while caspase-8-dependent reduction did not. In conclusion, our study highlights the importance of the TNF-α-dependent death pathway induced in liver macrophages following partial hepatectomy in regulating the antitumoral immune responses.

10.
Cancers (Basel) ; 12(4)2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32276404

ABSTRACT

In cancer biology, epithelial-to-mesenchymal transition (EMT) is associated with tumorigenesis, stemness, invasion, metastasis, and resistance to therapy. Evidence of co-expression of epithelial and mesenchymal markers suggests that EMT should be a stepwise process with distinct intermediate states rather than a binary switch. In the present study, we propose a morphological approach that enables the detection and quantification of cancer cells with hybrid E/M states, i.e., which combine partially epithelial (E) and partially mesenchymal (M) states. This approach is based on a sequential immunohistochemistry technique performed on the same tissue section, the digitization of whole slides, and image processing. The aim is to extract quantitative indicators able to quantify the presence of hybrid E/M states in large series of human cancer samples and to analyze their relationship with cancer aggressiveness. As a proof of concept, we applied our methodology to a series of about a hundred urothelial carcinomas and demonstrated that the presence of cancer cells with hybrid E/M phenotypes at the time of diagnosis is strongly associated with a poor prognostic value, independently of standard clinicopathological features. Although validation on a larger case series and other cancer types is required, our data support the hybrid E/M score as a promising prognostic biomarker for carcinoma patients.

11.
Int J Mol Sci ; 19(11)2018 Nov 09.
Article in English | MEDLINE | ID: mdl-30423986

ABSTRACT

Research on tumor angiogenesis has mainly focused on the vascular endothelial growth factor (VEGF) family and on methods to block its actions. However, reports on VEGF receptor (VEGFR) expression in tumor-associated endothelial cells (ECs) are limited. Thus, we evaluated VEGF, VEGFR-1 and VEGFR-2 expression in ECs of colorectal cancer (CRC) using immunohistochemistry. VEGF, VEGFR-1 and -2 expression in ECs was quantitatively evaluated by digital image analysis in a retrospective series of 204 tumor tissue samples and related to clinical variables. The data show that the VEGF, VEGFR-1 and VEGFR-2 expression in ECs is heterogeneous. Multivariate analysis including a set of clinicopathological variables reveals that high EC VEGFR-1 expression is an independent prognostic factor for overall survival (OS). The combination of low VEGFR-1 and high VEGFR-2 expression in ECs outperforms models integrating VEGFR-1 and VEGFR-2 as separate markers. Indeed, this VEGFR-1_VEGFR-2 combination is an independent negative prognostic factor for OS (p = 0.012) and metastasis-free survival (p = 0.007). In conclusion, this work illustrates the importance of studying the distribution of VEGF members in ECs of CRC. Interestingly, our preliminary data suggest that high VEGFR-1 and low VEGFR-2 expression in ECs appear to be involved in the progression of CRC, suggesting that targeting EC VEGFR-1 could offer novel opportunities for CRC treatment. However, a prospective validation study is needed.


Subject(s)
Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Endothelial Cells/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Adult , Aged , Aged, 80 and over , Female , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Multivariate Analysis , Prognosis , Vascular Endothelial Growth Factor A/metabolism
12.
Oncol Rep ; 40(5): 2497-2506, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30226613

ABSTRACT

Non­coding RNAs (ncRNAs) have been shown to serve important roles in carcinogenesis via complex mechanisms, including transcriptional and post­transcriptional regulation, and chromatin interactions. Urothelial carcinoma­associated 1 (UCA1), a long ncRNA, was recently shown to have tumorigenic properties in urothelial bladder cancer (UBC), as demonstrated by enhanced proliferation, migration, invasion and therapy resistance of UBC cell lines in vitro. These in vitro findings suggested that UCA1 is associated with aggressive tumor behavior and could have prognostic implications in UBC. The aims of the present study were to therefore to investigate the statistical associations between UCA1 RNA expression and UBC pathological features, patient prognosis and p53 and Ki­67 expression. Chromogenic in situ hybridization and immunohistochemistry were performed on UBC tissue microarrays to characterize UCA1 RNA, and p53 and Ki­67 expression in 208 UBC cases, including 145 non­muscle­invasive and 63 muscle­invasive cases. UCA1 was observed in the tumor cells of 166/208 (80%) UBC cases tested. No expression was noted in normal stromal and endothelium cells. Patients with UBC that overexpressed UCA1 (35%) had a significantly higher survival rate (P=0.006) compared with that in patients with UBC that did not overexpress UCA1. This prognostic factor was independent of tumor morphology, concomitant carcinoma in situ, tumor grade and tumor stage. In addition, the absence of UCA1 overexpression was significantly associated with a high Ki­67 proliferative index (P=0.008) and a p53 'mutated' immunoprofile (strong nuclear expression or complete absence of staining; P=0.003). In conclusion, the present results identified UCA1 as potentially being a novel independent prognostic marker in UBC that was associated with a better patient prognosis and that could serve a pivotal role in bladder cancer carcinogenesis.


Subject(s)
Biomarkers, Tumor/genetics , Carcinogenesis/genetics , RNA, Long Noncoding/genetics , Urinary Bladder Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Disease-Free Survival , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Urinary Bladder Neoplasms/classification , Urinary Bladder Neoplasms/pathology
13.
Sci Rep ; 7: 42964, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28220842

ABSTRACT

Immunohistochemistry (IHC) is a widely used technique in pathology to evidence protein expression in tissue samples. However, this staining technique is known for presenting inter-batch variations. Whole slide imaging in digital pathology offers a possibility to overcome this problem by means of image normalisation techniques. In the present paper we propose a methodology to objectively evaluate the need of image normalisation and to identify the best way to perform it. This methodology uses tissue microarray (TMA) materials and statistical analyses to evidence the possible variations occurring at colour and intensity levels as well as to evaluate the efficiency of image normalisation methods in correcting them. We applied our methodology to test different methods of image normalisation based on blind colour deconvolution that we adapted for IHC staining. These tests were carried out for different IHC experiments on different tissue types and targeting different proteins with different subcellular localisations. Our methodology enabled us to establish and to validate inter-batch normalization transforms which correct the non-relevant IHC staining variations. The normalised image series were then processed to extract coherent quantitative features characterising the IHC staining patterns.


Subject(s)
Image Processing, Computer-Assisted/methods , Immunohistochemistry/methods , Biomarkers, Tumor/metabolism , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Tissue Array Analysis
14.
Hippocampus ; 25(2): 197-207, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25212128

ABSTRACT

The neuroprotective effect of hypothermia has been demonstrated in in vivo and in vitro models of cerebral ischemia. In regard to the hippocampus, previous studies have mainly focused on CA1 pyramidal neurons, which are very vulnerable to ischemia. But the dentate gyrus (DG), in which neuronal proliferation occurs, can also be damaged by ischemia. In this study, we explored the neuroprotective effect of postischemic hypothermia in different areas of the hippocampus after mild or severe ischemia. Organotypic hippocampal slice cultures were prepared from 6- to 8-day-old rats and maintained for 12 days. Cultures were exposed to 25 or 35 min of oxygen and glucose deprivation (OGD). Neuronal damage was quantified after 6, 24, 48, and 72 h by propidium iodide fluorescence. Mild hypothermia (33°C) was induced 1 h after the end of OGD and was maintained for a period of 24 h. Short OGD produced delayed neuronal damage in the CA1 area and in the DG and to a lesser extend in the CA3 area. Damage in CA1 pyramidal cells was totally prevented by hypothermia whereas neuroprotection was limited in the DG. Thirty-five-minute OGD induced more rapid and more severe cell death in the three regions. In this case, hypothermia induced 1 h after OGD was unable to protect CA1 pyramidal cells whereas hypothermia induced during OGD was able to prevent cell loss. This study provides evidence that neuroprotection by hypothermia is limited to specific areas and depends on the severity of the ischemia.


Subject(s)
Glucose/deficiency , Hippocampus/pathology , Hippocampus/physiopathology , Hypothermia, Induced , Hypoxia/therapy , Animals , Cell Death/physiology , Disease Models, Animal , Hypoxia/pathology , Hypoxia/physiopathology , Hypoxia-Ischemia, Brain , Neurons/pathology , Neurons/physiology , Proton Magnetic Resonance Spectroscopy , Rats, Wistar , Time Factors , Tissue Culture Techniques
15.
Regen Med ; 9(4): 437-52, 2014.
Article in English | MEDLINE | ID: mdl-25159062

ABSTRACT

AIM: Biomarker-based tracking of human stem cells xenotransplanted into animal models is crucial for studying their fate in the field of cell therapy or tumor xenografting. MATERIALS & METHODS: Using immunohistochemistry and in situ hybridization, we analyzed the expression of three human-specific biomarkers: Ku80, human mitochondria (hMito) and Alu. RESULTS: We showed that Ku80, hMito and Alu biomarkers are broadly expressed in human tissues with no or low cross-reactivity toward rat, mouse or pig tissues. In vitro, we demonstrated that their expression is stable over time and does not change along the differentiation of human-derived induced pluripotent stem cells or human glial-restricted precursors. We tracked in vivo these cell populations after transplantation in rodent spinal cords using aforementioned biomarkers and human-specific antibodies detecting apoptotic, proliferating or neural-committed cells. CONCLUSION: This study assesses the human-species specificity of Ku80, hMito and Alu, and proposes useful biomarkers for characterizing human stem cells in xenotransplantation paradigms.


Subject(s)
Antigens, Differentiation/metabolism , Cell Tracking/methods , Induced Pluripotent Stem Cells , Stem Cell Transplantation , Animals , Heterografts , Humans , Immunohistochemistry/methods , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/transplantation , Male , Mice , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...