Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Reprod Toxicol ; : 108630, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906490

ABSTRACT

Infertility affects ~12% of couples, with environmental chemical exposure as a potential contributor. Of the chemicals that are actively manufactured, very few are assessed for reproductive health effects. Rodents are commonly used to evaluate reproductive effects, which is both costly and time consuming. Thus, there is a pressing need for rapid methods to test a broader range of chemicals. Here, we developed a strategy to evaluate large numbers of chemicals for reproductive toxicity via a yeast, S. cerevisiae high-throughput assay to assess gametogenesis as a potential new approach method (NAM). By simultaneously assessing chemicals for growth effects, we can distinguish if a chemical affects gametogenesis only, proliferative growth only or both. We identified a well-known mammalian reproductive toxicant, bisphenol A (BPA) and ranked 19 BPA analogs for reproductive harm. By testing mixtures of BPA and its analogs, we found that BPE and 17 ß-estradiol each together with BPA showed synergistic effects that worsened reproductive outcome. We examined an additional 179 environmental chemicals including phthalates, pesticides, quaternary ammonium compounds and per- and polyfluoroalkyl substances and found 57 with reproductive effects. Many of the chemicals were found to be strong reproductive toxicants that have yet to be tested in mammals. Chemicals having affect before meiosis I division vs. meiosis II division were identified for 16 gametogenesis-specific chemicals. Finally, we demonstrate that in general yeast reproductive toxicity correlates well with published reproductive toxicity in mammals illustrating the promise of this NAM to quickly assess chemicals to prioritize the evaluation for human reproductive harm.

2.
bioRxiv ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38826231

ABSTRACT

While high-throughput (HTP) assays have been proposed as platforms to rapidly assess reproductive toxicity, there is currently a lack of established assays that specifically address germline development/function and fertility. We assessed the applicability domains of yeast (S. cerevisiae) and nematode (C. elegans) HTP assays in toxicity screening of 124 environmental chemicals, determining their agreement in identifying toxicants and their concordance with reproductive toxicity in vivo. We integrated data generated in the two models and compared results using a streamlined, semi-automated benchmark dose (BMD) modeling approach. We then extracted and modeled relevant mammalian in vivo data available for the matching chemicals included in the Toxicological Reference Database (ToxRefDB). We ranked potencies of common compounds using the BMD and evaluated correlation between the datasets using Pearson and Spearman correlation coefficients. We found moderate to good correlation across the three data sets, with r = 0.48 (95% CI: 0.28-1.00, p<0.001) and rs = 0.40 (p=0.002) for the parametric and rank order correlations between the HTP BMDs; r = 0.95 (95% CI: 0.76-1.00, p=0.0005) and rs = 0.89 (p=0.006) between the yeast assay and ToxRefDB BMDs; and r = 0.81 (95% CI: 0.28-1.00, p=0.014) and rs = 0.75 (p=0.033) between the worm assay and ToxRefDB BMDs. Our findings underscore the potential of these HTP assays to identify environmental chemicals that exhibit reproductive toxicity. Integrating these HTP datasets into mammalian in vivo prediction models using machine learning methods could further enhance the predictive value of these assays in future rapid screening efforts.

3.
Reprod Toxicol ; 126: 108602, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723698

ABSTRACT

Reproduction is a functional outcome that relies on complex cellular, tissue, and organ interactions that span the developmental period to adulthood. Thus, the assessment of its disruption by environmental chemicals would benefit significantly from scalable and innovative approaches to testing using functionally comparable reproductive models such as the nematode C. elegans. We adapted a previously described low-throughput in vivo chromosome segregation assay using C. elegans predictive of reproductive toxicity and leveraged available public data sources (ToxCast, ICE) to screen and characterize 133 physiologically-relevant chemicals in a high-throughput manner. The screening outcome was further validated in a second, independent in vivo assay assessing embryonic viability. In total, 13 chemicals were classified as reproductive toxicants with the two most active chemicals belonging to the large family of Quaternary Ammonium Compounds (QACs) commonly used as disinfectants but with limited available reproductive toxicity data. We compared the results from the C. elegans assay with ToxCast in vitro data compiled from 700+ cell response assays and 300+ signaling pathways-based assays. We did not observe a difference in the bioactivity or in the average potency (AC50) between the top and bottom chemicals. However, the intended target categories were significantly different between the classified chemicals with, in particular, an over-representation of steroid hormone targets for the high Z-score chemicals. Taken together, these results point to the value of in vivo models that scale to high-throughput level for reproductive toxicity assessment and to the need to prioritize the assessment of QACs impacts on reproduction.


Subject(s)
Caenorhabditis elegans , Environmental Pollutants , Reproduction , Caenorhabditis elegans/drug effects , Animals , Reproduction/drug effects , Environmental Pollutants/toxicity , Toxicity Tests/methods , High-Throughput Screening Assays
4.
Curr Opin Toxicol ; 382024 Jun.
Article in English | MEDLINE | ID: mdl-38586548

ABSTRACT

Reproduction is a remarkably intricate process involving the interaction of multiple cell types and organ systems unfolding over long periods of time and that culminates with the production of gametes. The initiation of germ cell development takes place during embryogenesis but only completes decades later in humans. The complexity inherent to reproduction and its study has long hampered our ability to decipher how environmental agents disrupt this process. Single-cell approaches provide an opportunity for a deeper understanding of the action of toxicants on germline function and analyze how the response to their exposure is differentially distributed across tissues and cell types. In addition to single-cell RNA sequencing, other single-cell or nucleus level approaches such as ATAC-sequencing and multi-omics have expanded the strategies that can be implemented in reproductive toxicological studies to include epigenomic and the nuclear transcriptomic data. Here we will discuss the current state of single-cell technologies and how they can best be utilized to advance reproductive toxicological studies. We will then discuss case studies in two model organisms (Caenorhabditis elegans and mouse) studying different environmental exposures (alcohol and e-cigarettes respectively) to highlight the value of single-cell and single-nucleus approaches for reproductive biology and reproductive toxicology.

5.
bioRxiv ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38585844

ABSTRACT

Reproduction is a functional outcome that relies on complex cellular, tissue, and organ interactions that span the developmental period to adulthood. Thus, the assessment of its disruption by environmental chemicals is remarkably painstaking in conventional toxicological animal models and does not scale up to the number of chemicals present in our environment and requiring testing. We adapted a previously described low-throughput in vivo chromosome segregation assay using C. elegans predictive of reproductive toxicity and leveraged available public data sources (ToxCast, ICE) to screen and characterize 133 physiologically-relevant chemicals in a high-throughput manner. The screening outcome was further validated in a second, independent in vivo assay assessing embryonic viability. In total, 13 chemicals were classified as reproductive toxicants with the two most active chemicals belonging to the large family of Quaternary Ammonium Compounds (QACs) commonly used as disinfectants but with limited available reproductive toxicity data. We compared the results from the C. elegans assay with ToxCast in vitro data compiled from 700+ cell response assays and 300+ signaling pathways-based assays. We did not observe a difference in the bioactivity or in average potency (AC50) between the top and bottom chemicals. However, the intended target categories were significantly different between the classified chemicals with, in particular, an over-representation of steroid hormone targets for the high Z-score chemicals. Taken together, these results point to the value of in vivo models that scale to high-throughput level for reproductive toxicity assessment and to the need to prioritize the assessment of QACs impacts on reproduction.

6.
STAR Protoc ; 4(4): 102756, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38043054

ABSTRACT

Caenorhabditis elegans is a valuable model to study organ, tissue, and cell-type responses to external cues. However, the nematode comprises multiple syncytial tissues with spatial coordinates corresponding to distinct nuclear transcriptomes. Here, we present a single-nucleus RNA sequencing (snRNA-seq) protocol that aims to overcome difficulties encountered with single-cell RNA sequencing in C. elegans. We describe steps for isolating C. elegans nuclei for downstream applications including snRNA-seq applied to the context of alcohol exposure. For complete details on the use and execution of this protocol, please refer to Truong et al. (2023).1.


Subject(s)
Caenorhabditis elegans , Cell Nucleus , Animals , Caenorhabditis elegans/genetics , Sequence Analysis, RNA , Base Sequence , Cell Nucleus/genetics , RNA, Small Nuclear
7.
Elife ; 122023 Dec 27.
Article in English | MEDLINE | ID: mdl-38150302

ABSTRACT

Cannabis, the most consumed illicit psychoactive drug in the world, is increasingly used by pregnant women. However, while cannabinoid receptors are expressed in the early embryo, the impact of phytocannabinoids exposure on early embryonic processes is lacking. Here, we leverage a stepwise in vitro differentiation system that captures the early embryonic developmental cascade to investigate the impact of exposure to the most abundant phytocannabinoid, Δ9-tetrahydrocannabinol (Δ9-THC). We demonstrate that Δ9-THC increases the proliferation of naive mouse embryonic stem cells (ESCs) but not of their primed counterpart. Surprisingly, this increased proliferation, dependent on the CB1 receptor binding, is only associated with moderate transcriptomic changes. Instead, Δ9-THC capitalizes on ESCs' metabolic bivalence by increasing their glycolytic rates and anabolic capabilities. A memory of this metabolic rewiring is retained throughout differentiation to Primordial Germ Cell-Like Cells in the absence of direct exposure and is associated with an alteration of their transcriptional profile. These results represent the first in-depth molecular characterization of the impact of Δ9-THC exposure on early stages of germline development.


Cannabis is the most widely used illicit drug in the world, with 4.3% of the global adult population estimated to have used it in the previous year. In particular, the consumption of cannabis by pregnant women has almost doubled in recent years and is particularly increased in those aged under 18. The main psychoactive component in cannabis, known as Δ9-THC, activates cannabinoid receptors in the brain, including the receptor CB1. Recent research has shown that CB1 is also active in the mouse embryo, but it remained unclear if Δ9-THC could also affect the development of an embryo. To better understand the potential effects of this exposure, scientists can study stem cells that develop into germ cells (which go on to form egg and sperm), which have been grown in the laboratory. Emerging research has shown that germ cells are particularly sensitive to changes in their environment and due to their role in reproduction, changes can have knock-on effects for embryos. Verdikt et al. studied the effects of Δ9-THC on mouse embryonic stem cells, finding that it caused them to multiply more quickly. This was dependent on both Δ9-THC binding to the CB1 receptor that causes the psychoactive effects of cannabis in the brain and an increased energy metabolism. Blocking an important metabolic pathway called glycolysis caused the Δ9-THC-treated cells to return to a normal multiplication rate. The exposed stem cells also gave rise to germ cells with abnormal metabolism and altered gene expression, suggesting that this metabolic 'memory' can be passed on to cells in the next developmental stage. Overall, the findings indicate that exposure to Δ9-THC alters the metabolism in early embryonic cells of mice and that these effects can be lasting. This emphasises the need for further research on the impact of cannabis use during pregnancy, particularly as the drug's availability is expected to increase significantly with changes in regulation. The work also contributes to research highlighting the inheritance of metabolism.


Subject(s)
Dronabinol , Pluripotent Stem Cells , Animals , Mice , Pregnancy , Female , Humans , Dronabinol/pharmacology , Germ Cells , Cell Differentiation , Embryonic Stem Cells
8.
Cell Rep ; 42(6): 112535, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37227821

ABSTRACT

Single-cell transcriptomic platforms provide an opportunity to map an organism's response to environmental cues with high resolution. Here, we applied single-nucleus RNA sequencing (snRNA-seq) to establish the tissue and cell type-resolved transcriptome of the adult C. elegans and characterize the inter- and trans-generational transcriptional impact of ethanol. We profiled the transcriptome of 41,749 nuclei resolving into 31 clusters, representing a diverse array of adult cell types including syncytial tissues. Following exposure to human-relevant doses of alcohol, several germline, striated muscle, and neuronal clusters were identified as being the most transcriptionally impacted at the F1 and F3 generations. The effect on germline clusters was confirmed by phenotypic enrichment analysis as well as by functional validation, which revealed a remarkable inter- and trans-generational increase in germline apoptosis, aneuploidy, and embryonic lethality. Together, snRNA-seq represents a valuable approach for the detailed examination of an adult organism's response to environmental exposures.


Subject(s)
Caenorhabditis elegans , Transcriptome , Animals , Adult , Humans , Transcriptome/genetics , Gene Expression Profiling , Ethanol/pharmacology , RNA, Small Nuclear
9.
bioRxiv ; 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-36993751

ABSTRACT

Cannabis, the most consumed illicit psychoactive drug in the world, is increasingly used by pregnant women. However, while cannabinoid receptors are expressed in the early embryo, the impact of phytocannabinoids exposure on early embryonic processes is lacking. Here, we leverage a stepwise in vitro differentiation system that captures early embryonic developmental cascade to investigate the impact of exposure to the most abundant phytocannabinoid, Δ9-tetrahydrocannabinol (Δ9-THC). We demonstrate that Δ9-THC increases the proliferation of naïve mouse embryonic stem cells (ESCs) but not of their primed counterpart. Surprisingly, this increased proliferation, dependent on the CB1 receptor binding, is only associated with moderate transcriptomic changes. Instead, Δ9-THC capitalizes on ESCs' metabolic bivalence by increasing their glycolytic rates and anabolic capabilities. A memory of this metabolic rewiring is retained throughout differentiation to Primordial Germ Cell-Like Cells in the absence of direct exposure and is associated with an alteration of their transcriptional profile. These results represent the first in-depth molecular characterization of the impact of Δ9-THC exposure on early stages of germline development.

10.
Curr Top Dev Biol ; 152: 31-76, 2023.
Article in English | MEDLINE | ID: mdl-36707214

ABSTRACT

The epigenome plays an important role in shaping phenotypes. However, whether the environment can alter an organism's phenotype across several generations through epigenetic remodeling in the germline is still a highly debated topic. In this chapter, we briefly review the mechanisms of epigenetic inheritance and their connection with germline development before highlighting specific developmental windows of susceptibility to environmental cues. We further discuss the evidence of transgenerational inheritance to a range of different environmental cues, both epidemiological in humans and experimental in rodent models. Doing so, we pinpoint the current challenges in demonstrating transgenerational inheritance to environmental cues and offer insight in how recent technological advances may help deciphering the epigenetic mechanisms at play. Together, we draw a detailed picture of how our environment can influence our epigenomes, ultimately reshaping our phenotypes, in an extended theory of inheritance.


Subject(s)
Cues , Epigenesis, Genetic , Humans , Phenotype , DNA Methylation , Inheritance Patterns/genetics
11.
Epigenet Insights ; 15: 25168657221113149, 2022.
Article in English | MEDLINE | ID: mdl-35860623

ABSTRACT

Toxicoepigenetics examines the health effects of environmental exposure associated with, or mediated by, changes in the epigenome. Despite high expectations, toxicoepigenomic data and methods have yet to become significantly utilized in chemical risk assessment. This article draws on a social science framework to highlight hitherto overlooked structural barriers to the incorporation of toxicoepigenetics in risk assessment and to propose ways forward. The present barriers stem not only from the lack of maturity of the field but also from differences in constraints and standards between the data produced by toxicoepigenetics and the regulatory science data that risk assessment processes require. Criteria and strategies that frame the validation of knowledge used for regulatory purposes limit the application of basic research in toxicoepigenetics toward risk assessment. First, the need in regulatory toxicology for standardized methods that form a consensus between regulatory agencies, basic research, and the industry conflicts with the wealth of heterogeneous data in toxicoepigenetics. Second, molecular epigenetic data do not readily translate into typical toxicological endpoints. Third, toxicoepigenetics investigates new forms of toxicity, in particular low-dose and long-term effects, that do not align well with the traditional framework of regulatory toxicology. We propose that increasing the usefulness of epigenetic data for risk assessment will require deliberate efforts on the part of the toxicoepigenetics community in 4 areas: fostering the understanding of epigenetics among risk assessors, developing knowledge infrastructure to demonstrate applicability, facilitating the normalization and exchange of data, and opening the field to other stakeholders.

12.
J Exp Zool A Ecol Integr Physiol ; 337(1): 70-74, 2022 01.
Article in English | MEDLINE | ID: mdl-33900057

ABSTRACT

The emergence of the field of transgenerational epigenetics inheritance (TEI) has profoundly reshaped our understanding of the relationships between environment, soma, and germ cells as well as of heredity. TEI refers to the changes in chromatin state, gene expression, and/or phenotypes that are transmitted across several generations without involving changes to the DNA sequences. TEI has direct connections with, and feeds from, the fields of molecular biology, genetics, developmental biology, and reproductive biology, among others. However, the expansion of TEI-related research, has profoundly reshaped boundaries within each field and often led to the erosion of theories and concepts considered as tenets of biology. We first explore how the molecularization of biology has shifted the definition of epigenetics to include the notion of heredity and how epigenetics has refined our understanding of the central dogma of biology. The demonstrated transfer of environmental information from soma to germ cell through extracellular vesicles and subsequent alteration of health outcomes in offspring has put a definite end to the long-held principle of the Weismann barrier. TEI has also simultaneously led to the revival of the inheritance of acquired characteristics while further eroding the concept of an epigenetic "blank slate" in mammals. Using an historical framework, and via the exploration of central studies in the field, in this perspective article, we will draw a compelling argument for the revolutionary aspect of TEI in biology.


Subject(s)
Epigenesis, Genetic , Heredity , Animals , Germ Cells , Inheritance Patterns , Phenotype
13.
Environ Health Perspect ; 129(9): 97013, 2021 09.
Article in English | MEDLINE | ID: mdl-34585602

ABSTRACT

BACKGROUND: Animal-based studies indicate that bisphenol A (BPA) exposure is detrimental to reproductive health, but its impact on the earliest stages of germ cell development remains poorly defined. OBJECTIVES: Using a murine in vitro model of early germ cell specification and differentiation, we sought to assess whether exposure to low levels of BPA prior to formation of primordial germ cells (PGCs) alters their differentiation trajectory and unique molecular program. METHODS: We used an established method of in vitro differentiation of mouse embryonic stem cells (ESCs) into epiblast-like cells (EpiLCs) followed by PGC-like cells (PGCLCs), which together recapitulate defined stages of early germ cell development. Cellular consequences were determined using hemocytometer-based cell counting, fixation, and intracellular staining, followed by flow cytometry/fluorescence-activated cell sorting (FACS) of cells exposed to increasing concentrations (range: 1 nM-10 µM) of BPA. To interrogate and characterize gene expression differences resulting from BPA exposure, we also generated RNA-seq libraries from RNA extracted from FACS-purified PGCLCs and performed transcriptome analysis using bioinformatics-based approaches. RESULTS: Exposure of EpiLCs to BPA resulted in higher numbers of cells that were associated with a higher proportion of cells in S-phase as well as a lower proportion undergoing apoptosis; this difference occurred in a concentration-dependent manner. Exposure also resulted in a greater fraction of EpiLCs showing signs of DNA damage. Remarkably, EpiLC exposure did not negatively affect PGC specification and resulted in a concentration-dependent effect on PGCLC proliferation in XX but not XY cells. PGCLC transcriptome analysis revealed an aberrant program with significant deregulation of X-linked genes and retrotransposon expression. Differential gene expression analysis also revealed the deregulation of genes associated with lipid metabolism as well as deregulated expression of genes associated with later stages of gametogenesis. CONCLUSIONS: To the best of our knowledge our findings represent the first characterization of the consequences of early BPA exposure on a model of mammalian PGC development, highlighting altered cell behavior, altered underlying pathways, and altered molecular processes. https://doi.org/10.1289/EHP8196.


Subject(s)
Gene Expression Profiling , Germ Cells , Animals , Benzhydryl Compounds , Cell Differentiation , Mice , Phenols
14.
J Biol Chem ; 297(3): 101060, 2021 09.
Article in English | MEDLINE | ID: mdl-34375643

ABSTRACT

Without effective homeostatic systems in place, excess copper (Cu) is universally toxic to organisms. While increased utilization of anthropogenic Cu in the environment has driven the diversification of Cu-resistance systems within enterobacteria, little research has focused on how this change in bacterial architecture impacts host organisms that need to maintain their own Cu homeostasis. Therefore, we utilized a simplified host-microbe system to determine whether the efficiency of one bacterial Cu-resistance system, increasing Cu-efflux capacity via the ubiquitous CusRS two-component system, contributes to the availability and subsequent toxicity of Cu in host Caenorhabditis elegans nematode. We found that a fully functional Cu-efflux system in bacteria increased the severity of Cu toxicity in host nematodes without increasing the C. elegans Cu-body burden. Instead, increased Cu toxicity in the host was associated with reduced expression of a protective metal stress-response gene, numr-1, in the posterior pharynx of nematodes where pharyngeal grinding breaks apart ingested bacteria before passing into the digestive tract. The spatial localization of numr-1 transgene activation and loss of bacterially dependent Cu-resistance in nematodes without an effective numr-1 response support the hypothesis that numr-1 is responsive to the bacterial Cu-efflux capacity. We propose that the bacterial Cu-efflux capacity acts as a robust spatial determinant for a host's response to chronic Cu stress.


Subject(s)
Caenorhabditis elegans/metabolism , Caenorhabditis elegans/microbiology , Copper/metabolism , Environmental Pollutants/metabolism , Escherichia coli/metabolism , Animals , Biological Transport , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Copper/toxicity , Environmental Pollutants/toxicity , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism
15.
Biol Reprod ; 105(3): 616-624, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34132770

ABSTRACT

Metabolites control epigenetic mechanisms, and conversly, cell metabolism is regulated at the epigenetic level in response to changes in the cellular environment. In recent years, this metabolo-epigenetic control of gene expression has been implicated in the regulation of multiple stages of embryonic development. The developmental potency of stem cells and their embryonic counterparts is directly determined by metabolic rewiring. Here, we review the current knowledge on the interplay between epigenetics and metabolism in the specific context of early germ cell development. We explore the implications of metabolic rewiring in primordial germ cells in light of their epigenetic remodeling during cell fate determination. Finally, we discuss the relevance of concerted metabolic and epigenetic regulation of primordial germ cells in the context of mammalian transgenerational epigenetic inheritance.


Subject(s)
Epigenesis, Genetic , Germ Cells/growth & development , Metabolome , Animals , Epigenomics , Humans , Metabolomics , Mice , Rats
16.
Stud Hist Philos Sci ; 86: 35-46, 2021 04.
Article in English | MEDLINE | ID: mdl-33965662

ABSTRACT

Epigenetic concepts are fundamentally shaped by a legacy of negative definition, often understood by what they are not. Yet the function and implication of negative definition for scientific discourse has thus far received scant attention. Using the term epimutation as exemplar, we analyze the paradoxical like-but-unlike structure of a term that must simultaneously connect with but depart from genetic concepts. We assess the historical forces structuring the use of epimutation and like terms such as paramutation. This analysis highlights the positive characteristics defining epimutation: the regularity, oxymoronic temporality, and materiality of stable processes. Integrating historical work, ethnographic observation, and insights from philosophical practice-oriented conceptual analysis, we detail the distinctive epistemic goals the epimutation concept fulfils in medicine, plant biology and toxicology. Epimutation and allied epigenetic terms have succeeded by being mutation-like and recognizable, yet have failed to consolidate for exactly the same reason: they are tied simultaneously by likeness and opposition to nouns that describe things that are assumed to persist unchanged over space and time. Moreover, negative definition casts the genetic-epigenetic relationship as an either/or binary, overshadowing continuities and connections. This analysis is intended to assist practitioners and observers of genetics and epigenetics in recognizing and moving beyond the conceptual legacies of negative definition.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Epigenomics , Mutation
17.
J Dev Biol ; 8(4)2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33339122

ABSTRACT

The Weismann barrier has long been regarded as a basic tenet of biology. However, upon close examination of its historical origins and August Weismann's own writings, questions arise as to whether such a status is warranted. As scientific research has advanced, the persistence of the concept of the barrier has left us with the same dichotomies Weismann contended with over 100 years ago: germ or soma, gene or environment, hard or soft inheritance. These dichotomies distract from the more important questions we need to address going forward. In this review, we will examine the theories that have shaped Weismann's thinking, how the concept of the Weismann barrier emerged, and the limitations that it carries. We will contrast the principles underlying the barrier with recent and less recent findings in developmental biology and transgenerational epigenetic inheritance that have profoundly eroded the oppositional view of germline vs. soma. Discarding the barrier allows us to examine the interactive processes and their response to environmental context that generate germ cells in the first place, determine the entirety of what is inherited through them, and set the trajectory for the health status of the progeny they bear.

18.
Epigenet Insights ; 13: 2516865720947014, 2020.
Article in English | MEDLINE | ID: mdl-32864568

ABSTRACT

We live in a complex chemical environment where there are an estimated 350 000 chemical compounds or mixtures commercially produced. A strong body of literature shows that there are time points during early development when an organism's epigenome is particularly sensitive to chemicals in its environment. What is less understood is how gene-environment and epigenetic-environment interactions change with age. This question is bidirectional: (1) how do chemicals in the environment affect the aging process and (2) how does aging affect an organism's response to its chemical environment? The study of gene-environment interactions with age is especially important because, in many parts of the world, older individuals are a large and rapidly growing proportion of the population and because aging is a process universal to most of the animal kingdom. Epigenetics has emerged as a crucial framework for studying aging as epigenetic pathways, often triggered by environmental stimuli, have been shown to be essential regulators of the aging process. In this perspective article, we delineate the connection between aging, epigenetics, and environmental exposures. We discuss why it is essential to consider age when researching how an organism interacts with its environment. We describe recent advances in understanding how the chemical environment affects aging and the gap in research on how age affects an organism's response to the environment. Finally, we highlight how model organisms and network approaches can help fill this crucial gap. Taken together, systemic changes that occur in the epigenome with age indicate that adult organisms cannot be treated as a homogeneous population and that there are discrete mechanisms modulating the aging epigenome that we do not yet understand.

19.
FASEB J ; 34(9): 11444-11459, 2020 09.
Article in English | MEDLINE | ID: mdl-32654256

ABSTRACT

In a rat model, perinatal nicotine exposure results in an epigenetically driven multi- and trans-generationally transmitted asthmatic phenotype that tends to wane over successive generations. However, the effect of repeat nicotine exposure during the F1 (Filial 1) gestational period on the transmitted phenotype is unknown. Using a well-established rat model, we compared lung function, mesenchymal markers of airway reactivity, and global gonadal DNA methylation changes in F2 offspring in a sex-specific manner following perinatal exposure to nicotine in only the F0 gestation, in both F0 and F1 (F0/F1) gestations, and in neither (control group). Both F0 only and F0/F1 exposure groups showed an asthmatic phenotype, an effect that was more pronounced in the F0/F1 exposure group, especially in males. Testicular global DNA methylation increased, while ovarian global DNA methylation decreased in the F0/F1 exposed group. Since the offspring of smokers are more likely to smoke than the offspring of nonsmokers, this sets the stage for more severe asthma if both mother and grandmother had smoked during their pregnancies. Increased gonadal DNA methylation changes following nicotine reexposure in the F1 generation suggests that epigenetic mechanisms might well underlie the transgenerational inheritance of acquired phenotypic traits in general and nicotine-induced asthma in particular.


Subject(s)
Asthma/diagnosis , Lung/drug effects , Nicotine/toxicity , Prenatal Exposure Delayed Effects/diagnosis , Animals , Asthma/chemically induced , DNA Methylation/drug effects , Epigenesis, Genetic/drug effects , Female , Lung/physiopathology , Male , Maternal Exposure/adverse effects , Nicotinic Agonists/toxicity , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Rats, Sprague-Dawley , Respiratory Function Tests , Sex Factors , Testis/drug effects , Testis/metabolism
20.
Environ Int ; 141: 105758, 2020 08.
Article in English | MEDLINE | ID: mdl-32402980

ABSTRACT

Recent studies suggested a significant downward trend in population's exposure to bisphenol A (BPA) in the United States. However, the temporal trend of BPA exposure remains unclear in China - a populous country with substantial industrial activities but less efforts made to phase out BPA in consumer products. In addition, it is unclear to what extent a visit from the United States to China could affect human exposure to BPA. In this natural experiment, we measured the concentration of total BPA in 418 urine samples repeatedly collected from 55 Los Angeles residents before, during, and after they spent 10 weeks in Beijing from 2012 to 2017. We found that traveling from Los Angeles to Beijing led to a 2.91-fold (95% CI: 2.43 to 3.50) increase in urinary BPA levels, which fully returned to baseline after study participants came back to Los Angeles. From 2012 to 2017, urinary BPA concentrations decreased in Los Angeles by 25.5% per year (95% CI: -30.8% to -19.8%; p < 0.001) but did not change in Beijing (p = 0.24). Consequently, the concentration ratio of urinary BPA between Beijing and Los Angeles increased from 1.23 (95% CI: 0.82 to 1.85) in 2012 to 4.05 (95% CI: 2.75 to 5.97) in 2017. These results indicate that BPA exposures may increase among international travelers to China. Additional efforts are needed to reduce population's exposure to BPA in China.


Subject(s)
Benzhydryl Compounds , Beijing , China , Humans , Los Angeles , Phenols , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...