Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(19): 13617-13628, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38695163

ABSTRACT

Here, we present a cross-linking approach to covalently functionalize and stabilize DNA origami structures in a one-pot reaction. Our strategy involves adding nucleotide sequences to adjacent staple strands, so that, upon assembly of the origami structure, the extensions form short hairpin duplexes targetable by psoralen-labeled triplex-forming oligonucleotides bearing other functional groups (pso-TFOs). Subsequent irradiation with UVA light generates psoralen adducts with one or both hairpin staples leading to site-specific attachment of the pso-TFO (and attached group) to the origami with ca. 80% efficiency. Bis-adduct formation between strands in proximal hairpins further tethers the TFO to the structure and generates "superstaples" that improve the structural integrity of the functionalized complex. We show that directing cross-linking to regions outside of the origami core dramatically reduces sensitivity of the structures to thermal denaturation and disassembly by T7 RNA polymerase. We also show that the underlying duplex regions of the origami core are digested by DNase I and thus remain accessible to read-out by DNA-binding proteins. Our strategy is scalable and cost-effective, as it works with existing DNA origami structures, does not require scaffold redesign, and can be achieved with just one psoralen-modified oligonucleotide.


Subject(s)
Cross-Linking Reagents , DNA , Nucleic Acid Conformation , Ultraviolet Rays , DNA/chemistry , Cross-Linking Reagents/chemistry , Photochemical Processes , Ficusin/chemistry
2.
Commun Biol ; 6(1): 962, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37735514

ABSTRACT

BRAF mutations occur early in serrated colorectal cancers, but their long-term influence on tissue homeostasis is poorly characterized. We investigated the impact of short-term (3 days) and long-term (6 months) expression of BrafV600E in the intestinal tissue of an inducible mouse model. We show that BrafV600E perturbs the homeostasis of intestinal epithelial cells, with impaired differentiation of enterocytes emerging after prolonged expression of the oncogene. Moreover, BrafV600E leads to a persistent transcriptional reprogramming with enrichment of numerous gene signatures indicative of proliferation and tumorigenesis, and signatures suggestive of metabolic rewiring. We focused on the top-ranking cholesterol biosynthesis signature and confirmed its increased expression in human serrated lesions. Functionally, the cholesterol lowering drug atorvastatin prevents the establishment of intestinal crypt hyperplasia in BrafV600E-mutant mice. Overall, our work unveils the long-term impact of BrafV600E expression in intestinal tissue and suggests that colorectal cancers with mutations in BRAF might be prevented by statins.


Subject(s)
Colorectal Neoplasms , Proto-Oncogene Proteins B-raf , Animals , Humans , Mice , Cholesterol , Colorectal Neoplasms/genetics , Lipid Metabolism , Proto-Oncogene Proteins B-raf/genetics , Transcriptional Activation
3.
Neurobiol Dis ; 185: 106236, 2023 09.
Article in English | MEDLINE | ID: mdl-37495179

ABSTRACT

Huntington's disease (HD) is a fatal neurodegenerative disease with limited treatment options. Human and animal studies have suggested that metabolic and mitochondrial dysfunctions contribute to HD pathogenesis. Here, we use high-resolution respirometry to uncover defective mitochondrial oxidative phosphorylation and electron transfer capacity when a mutant huntingtin fragment is targeted to neurons or muscles in Drosophila and find that enhancing mitochondrial function can ameliorate these defects. In particular, we find that co-expression of parkin, an E3 ubiquitin ligase critical for mitochondrial dynamics and homeostasis, produces significant enhancement of mitochondrial respiration when expressed either in neurons or muscles, resulting in significant rescue of neurodegeneration, viability and longevity in HD model flies. Targeting mutant HTT to muscles results in larger mitochondria and higher mitochondrial mass, while co-expression of parkin increases mitochondrial fission and decreases mass. Furthermore, directly addressing HD-mediated defects in the fly's mitochondrial electron transport system, by rerouting electrons to either bypass mitochondrial complex I or complexes III-IV, significantly increases mitochondrial respiration and results in a striking rescue of all phenotypes arising from neuronal mutant huntingtin expression. These observations suggest that bypassing impaired mitochondrial respiratory complexes in HD may have therapeutic potential for the treatment of this devastating disorder.


Subject(s)
Huntington Disease , Neurodegenerative Diseases , Animals , Humans , Drosophila/metabolism , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Mitochondria/metabolism , Ubiquitin-Protein Ligases/metabolism , Huntington Disease/metabolism , Huntingtin Protein/genetics , Huntingtin Protein/metabolism
5.
Biomedicines ; 10(9)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36140394

ABSTRACT

The flavoprotein kynurenine 3-monooxygenase (KMO) is localised to the outer mitochondrial membrane and catalyses the synthesis of 3-hydroxykynurenine from L-kynurenine, a key step in the kynurenine pathway (KP) of tryptophan degradation. Perturbation of KP metabolism due to inflammation has long been associated with the pathogenesis of several neurodegenerative disorders, including Huntington's disease (HD)-which is caused by the expansion of a polyglutamine stretch in the huntingtin (HTT) protein. While HTT is primarily localised to the cytoplasm, it also associates with mitochondria, where it may physically interact with KMO. In order to test this hypothesis, we employed bimolecular fluorescence complementation (BiFC) and found that KMO physically interacts with soluble HTT exon 1 protein fragment in living cells. Notably, expansion of the disease-causing polyglutamine tract in HTT leads to the formation of proteinaceous intracellular inclusions that disrupt this interaction with KMO, markedly decreasing BiFC efficiency. Using confocal microscopy and ultrastructural analysis, we determined KMO and HTT localisation within the cell and found that the KMO-HTT interaction is localized to the outer mitochondrial membrane. These data suggest that KMO may interact with a pool of HTT at the mitochondrial membrane, highlighting a possible physiological role for mitochondrial HTT. The KMO-HTT interaction is abrogated upon polyglutamine expansion, which may indicate a heretofore unrecognized relevance in the pathogenesis of this disorder.

6.
Microbiol Spectr ; 10(1): e0211021, 2022 02 23.
Article in English | MEDLINE | ID: mdl-34985335

ABSTRACT

Bacteria have developed unique mechanisms to adapt to environmental stresses and challenges of the immune system. Here, we report that Burkholderia pseudomallei, the causative agent of melioidosis, and its laboratory surrogate, Burkholderia thailandensis, utilize distinct mechanisms for surviving starvation at different incubation temperatures. At 21°C, Burkholderia are present as short rods which can rapidly reactivate and form colonies on solid media. At 4°C, Burkholderia convert into coccoid forms that cannot be cultured on solid agar but can be resuscitated in liquid media supplemented with supernatant obtained from logarithmic phase cultures of B. thailandensis, or catalase and Tween 80, thus displaying characteristics of differentially culturable bacteria (DCB). These DCB have low intensity fluorescence when stained with SYTO 9, have an intact cell membrane (propidium iodide negative), and contain 16S rRNA at levels comparable with growing cells. We also present evidence that lytic transglycosylases, a family of peptidoglycan-remodeling enzymes, are involved in the generation of coccoid forms and their resuscitation to actively growing cells. A B. pseudomallei ΔltgGCFD mutant with four ltg genes deleted did not produce coccoid forms at 4°C and could not be resuscitated in the liquid media evaluated. Our findings provide insights into the adaptation of Burkholderia to nutrient limitation and the generation of differentially culturable bacteria. IMPORTANCE Bacterial pathogens exhibit physiologically distinct forms that enable their survival in an infected host, the environment and following exposure to antimicrobial agents. B. pseudomallei causes the disease melioidosis, which has a high mortality rate and is difficult to treat with antibiotics. The bacterium is endemic to several countries and detected in high abundance in the environment. Here, we report that during starvation at low temperature, B. pseudomallei produces coccoid forms that cannot grow in standard media and which, therefore, can be challenging to detect using common tools. We provide evidence that the formation of these cocci is mediated by cell wall-specialized enzymes and lytic transglycosylases, and that resuscitation of these forms occurs following the addition of catalase and Tween 80. Our findings have important implications for the disease control and detection of B. pseudomallei, an agent of both public health and defense interest.


Subject(s)
Burkholderia/physiology , Temperature , Burkholderia/cytology , Burkholderia/genetics , Burkholderia pseudomallei/genetics , Burkholderia pseudomallei/physiology , Cell Culture Techniques , Humans , Melioidosis/microbiology , Peptidoglycan , RNA, Ribosomal, 16S/genetics
7.
Cardiovasc Res ; 118(7): 1835-1848, 2022 06 22.
Article in English | MEDLINE | ID: mdl-34048532

ABSTRACT

AIMS: Spontaneous coronary artery dissection (SCAD) is a cause of acute coronary syndromes and in rare cases sudden cardiac death (SCD). Connective tissue abnormalities, coronary inflammation, increased coronary vasa vasorum (VV) density, and coronary fibromuscular dysplasia have all been implicated in the pathophysiology of SCAD but have not previously been systematically assessed. We designed a study to investigate the coronary histological and dermal collagen ultrastructural findings in SCAD. METHODS AND RESULTS: Thirty-six autopsy SCAD cases were compared with 359 SCAD survivors. Coronary and myocardial histology and immunohistochemistry were undertaken. Transmission electron microscopy (TEM) of dermal extracellular matrix (ECM) components of n = 31 SCAD survivors and n = 16 healthy volunteers were compared. Autopsy cases were more likely male (19% vs. 5%; P = 0.0004) with greater proximal left coronary involvement (56% vs. 18%; P < 0.0001) compared to SCAD survivors. N = 24 (66%) of cases showed no myocardial infarction on macro- or microscopic examination consistent with arrhythmogenic death. There was significantly (P < 0.001) higher inflammation in cases with delayed-onset death vs. sudden death and significantly more inflammation surrounding the dissected vs. non-dissected vessel segments. N = 17 (47%) cases showed limited intimal fibro-elastic thickening but no features of fibromuscular dysplasia and no endothelial or internal elastic lamina abnormalities. There were no differences in VV density between SCAD and control cases. TEM revealed no general ultrastructural differences in ECM components or markers of fibroblast metabolic activity. CONCLUSIONS: Assessment of SCD requires careful exclusion of SCAD, particularly in cases without myocardial necrosis. Peri-coronary inflammation in SCAD is distinct from vasculitides and likely a reaction to, rather than a cause for SCAD. Coronary fibromuscular dysplasia or increased VV density does not appear pathophysiologically important. Dermal connective tissue changes are not common in SCAD survivors.


Subject(s)
Coronary Vessel Anomalies , Fibromuscular Dysplasia , Myocardial Infarction , Vascular Diseases , Connective Tissue , Coronary Angiography/methods , Coronary Vessel Anomalies/diagnostic imaging , Coronary Vessel Anomalies/etiology , Coronary Vessels , Humans , Inflammation , Male , Myocardial Infarction/pathology , Vascular Diseases/congenital
8.
PLoS Genet ; 16(11): e1009129, 2020 11.
Article in English | MEDLINE | ID: mdl-33170836

ABSTRACT

The enzyme kynurenine 3-monooxygenase (KMO) operates at a critical branch-point in the kynurenine pathway (KP), the major route of tryptophan metabolism. As the KP has been implicated in the pathogenesis of several human diseases, KMO and other enzymes that control metabolic flux through the pathway are potential therapeutic targets for these disorders. While KMO is localized to the outer mitochondrial membrane in eukaryotic organisms, no mitochondrial role for KMO has been described. In this study, KMO deficient Drosophila melanogaster were investigated for mitochondrial phenotypes in vitro and in vivo. We find that a loss of function allele or RNAi knockdown of the Drosophila KMO ortholog (cinnabar) causes a range of morphological and functional alterations to mitochondria, which are independent of changes to levels of KP metabolites. Notably, cinnabar genetically interacts with the Parkinson's disease associated genes Pink1 and parkin, as well as the mitochondrial fission gene Drp1, implicating KMO in mitochondrial dynamics and mitophagy, mechanisms which govern the maintenance of a healthy mitochondrial network. Overexpression of human KMO in mammalian cells finds that KMO plays a role in the post-translational regulation of DRP1. These findings reveal a novel mitochondrial role for KMO, independent from its enzymatic role in the kynurenine pathway.


Subject(s)
Kynurenine 3-Monooxygenase/metabolism , Kynurenine/metabolism , Mitochondria/metabolism , Mitochondrial Dynamics/genetics , Alleles , Animals , Animals, Genetically Modified , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster , Dynamins/metabolism , Epistasis, Genetic , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , HEK293 Cells , Humans , Kynurenine 3-Monooxygenase/genetics , Male , Mitophagy/genetics , Mutation , Phosphorylation , Protein Processing, Post-Translational , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Up-Regulation
9.
Sci Rep ; 9(1): 11060, 2019 07 30.
Article in English | MEDLINE | ID: mdl-31363151

ABSTRACT

Burkholderia pseudomallei is the causative agent of the tropical disease melioidosis. Its genome encodes an arsenal of virulence factors that allow it, when required, to switch from a soil dwelling bacterium to a deadly intracellular pathogen. With a high intrinsic resistance to antibiotics and the ability to overcome challenges from the host immune system, there is an increasing requirement for new antibiotics and a greater understanding into the molecular mechanisms of B. pseudomallei virulence and dormancy. The peptidoglycan remodeling enzymes, lytic transglycosylases (Ltgs) are potential targets for such new antibiotics. Ltgs cleave the glycosidic bonds within bacterial peptidoglycan allowing for the insertion of peptidoglycan precursors during cell growth and division, and cell membrane spanning structures such as flagella and secretion systems. Using bioinformatic analysis we have identified 8 putative Ltgs in B. pseudomallei K96243. We aimed to investigate one of these Ltgs, LtgG (BPSL3046) through the generation of deletion mutants and biochemical analysis. We have shown that LtgG is a key contributor to cellular morphology, division, motility and virulence in BALB/c mice. We have determined the crystal structure of LtgG and have identified various amino acids likely to be important in peptidoglycan binding and catalytic activity. Recombinant protein assays and complementation studies using LtgG containing a site directed mutation in aspartate 343, confirmed the essentiality of this amino acid in the function of LtgG.


Subject(s)
Bacterial Proteins/metabolism , Burkholderia pseudomallei/metabolism , Melioidosis/microbiology , Peptidoglycan Glycosyltransferase/metabolism , Animals , Bacterial Proteins/genetics , Burkholderia pseudomallei/cytology , Burkholderia pseudomallei/genetics , Burkholderia pseudomallei/pathogenicity , Cell Membrane/metabolism , Cell Shape , Computational Biology , Mice , Mice, Inbred BALB C , Peptidoglycan Glycosyltransferase/genetics , Virulence/genetics
10.
Sci Rep ; 9(1): 8337, 2019 06 06.
Article in English | MEDLINE | ID: mdl-31171861

ABSTRACT

Protein phosphatase PstP is conserved throughout the Actinobacteria in a genetic locus related to cell wall synthesis and cell division. In many Actinobacteria it is the sole annotated serine threonine protein phosphatase to counter the activity of multiple serine threonine protein kinases. We used transcriptional knockdown, electron microscopy and comparative phosphoproteomics to investigate the putative dual functions of PstP as a specific regulator of cell division and as a global regulator of protein phosphorylation. Comparative phosphoproteomics in the early stages of PstP depletion showed hyperphosphorylation of protein kinases and their substrates, confirming PstP as a negative regulator of kinase activity and global serine and threonine phosphorylation. Analysis of the 838 phosphorylation sites that changed significantly, suggested that PstP may regulate diverse phosphoproteins, preferentially at phosphothreonine near acidic residues, near the protein termini, and within membrane associated proteins. Increased phosphorylation of the activation loop of protein kinase B (PknB) and of the essential PknB substrate CwlM offer possible explanations for the requirement for pstP for growth and for cell wall defects when PstP was depleted.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Mycobacterium smegmatis/enzymology , Phosphoproteins/metabolism , Cell Wall/metabolism , Computer Simulation , Microscopy, Electron , Multigene Family , Mutation , Mycobacterium smegmatis/genetics , Mycobacterium tuberculosis/genetics , Phosphorylation , Promoter Regions, Genetic , Protein Serine-Threonine Kinases/metabolism , Proteomics
11.
Plant Physiol ; 179(2): 544-557, 2019 02.
Article in English | MEDLINE | ID: mdl-30459263

ABSTRACT

Tomato (Solanum lycopersicum) is a globally important crop with an economic value in the tens of billions of dollars, and a significant supplier of essential vitamins, minerals, and phytochemicals in the human diet. Shelf life is a key quality trait related to alterations in cuticle properties and remodeling of the fruit cell walls. Studies with transgenic tomato plants undertaken over the last 20 years have indicated that a range of pectin-degrading enzymes are involved in cell wall remodeling. These studies usually involved silencing of only a single gene and it has proved difficult to compare the effects of silencing these genes across the different experimental systems. Here we report the generation of CRISPR-based mutants in the ripening-related genes encoding the pectin-degrading enzymes pectate lyase (PL), polygalacturonase 2a (PG2a), and ß-galactanase (TBG4). Comparison of the physiochemical properties of the fruits from a range of PL, PG2a, and TBG4 CRISPR lines demonstrated that only mutations in PL resulted in firmer fruits, although mutations in PG2a and TBG4 influenced fruit color and weight. Pectin localization, distribution, and solubility in the pericarp cells of the CRISPR mutant fruits were investigated using the monoclonal antibody probes LM19 to deesterified homogalacturonan, INRA-RU1 to rhamnogalacturonan I, LM5 to ß-1,4-galactan, and LM6 to arabinan epitopes, respectively. The data indicate that PL, PG2a, and TBG4 act on separate cell wall domains and the importance of cellulose microfibril-associated pectin is reflected in its increased occurrence in the different mutant lines.


Subject(s)
CRISPR-Cas Systems , Enzymes/genetics , Fruit/physiology , Pectins/metabolism , Solanum lycopersicum/physiology , Cell Wall/chemistry , Cell Wall/metabolism , Enzymes/metabolism , Esterification , Galactans/genetics , Galactans/metabolism , Gene Expression Regulation, Plant , Gene Silencing , Solanum lycopersicum/genetics , Mutation , Pectins/genetics , Pectins/immunology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified
12.
Environ Microbiol ; 19(5): 1868-1880, 2017 05.
Article in English | MEDLINE | ID: mdl-28195384

ABSTRACT

Air pollution is the world's largest single environmental health risk (WHO). Particulate matter such as black carbon is one of the main components of air pollution. The effects of particulate matter on human health are well established however the effects on bacteria, organisms central to ecosystems in humans and in the natural environment, are poorly understood. We report here for the first time that black carbon drastically changes the development of bacterial biofilms, key aspects of bacterial colonisation and survival. Our data show that exposure to black carbon induces structural, compositional and functional changes in the biofilms of both S. pneumoniae and S. aureus. Importantly, the tolerance of the biofilms to multiple antibiotics and proteolytic degradation is significantly affected. Additionally, our results show that black carbon impacts bacterial colonisation in vivo. In a mouse nasopharyngeal colonisation model, black carbon caused S. pneumoniae to spread from the nasopharynx to the lungs, which is essential for subsequent infection. Therefore our study highlights that air pollution has a significant effect on bacteria that has been largely overlooked. Consequently these findings have important implications concerning the impact of air pollution on human health and bacterial ecosystems worldwide.


Subject(s)
Air Pollution/adverse effects , Anti-Bacterial Agents/pharmacology , Biofilms/growth & development , Drug Resistance, Multiple, Bacterial/drug effects , Methicillin-Resistant Staphylococcus aureus/growth & development , Soot/pharmacology , Streptococcus pneumoniae/growth & development , Animals , Biofilms/drug effects , Humans , Lung/microbiology , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice , Nasopharynx/microbiology , Pneumococcal Infections/drug therapy , Pneumococcal Infections/microbiology , Proteolysis/drug effects , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Streptococcus pneumoniae/drug effects
13.
Appl Environ Microbiol ; 83(1)2017 01 01.
Article in English | MEDLINE | ID: mdl-27864173

ABSTRACT

We show in this report that traces of juices released from salad leaves as they become damaged can significantly enhance colonization of salad leaves by Salmonella enterica Salad juices in water increased Salmonella growth by 110% over the level seen with the unsupplemented control and in host-like serum-based media by more than 2,400-fold over control levels. In serum-based media, salad juices induced growth of Salmonella via provision of Fe from transferrin, and siderophore production was found to be integral to the growth induction process. Other aspects relevant to salad leaf colonization and retention were enhanced, such as motility and biofilm formation, which were increased over control levels by >220% and 250%, respectively; direct attachment to salad leaves increased by >350% when a salad leaf juice was present. In terms of growth and biofilm formation, the endogenous salad leaf microbiota was largely unresponsive to leaf juice, suggesting that Salmonella gains a marked growth advantage from fluids released by salad leaf damage. Salad leaf juices also enhanced pathogen attachment to the salad bag plastic. Over 5 days of refrigeration (a typical storage time for bagged salad leaves), even traces of juice within the salad bag fluids increased Salmonella growth in water by up to 280-fold over control cultures, as well as enhancing salad bag colonization, which could be an unappreciated factor in retention of pathogens in fresh produce. Collectively, the study data show that exposure to salad leaf juice may contribute to the persistence of Salmonella on salad leaves and strongly emphasize the importance of ensuring the microbiological safety of fresh produce. IMPORTANCE: Salad leaves are an important part of a healthy diet but have been associated in recent years with a growing risk of food poisoning from bacterial pathogens such as Salmonella enterica Although this is considered a significant public health problem, very little is known about the behavior of Salmonella in the actual salad bag. We show that juices released from the cut ends of the salad leaves enabled the Salmonella cells to grow in water, even when it was refrigerated. Salad juice exposure also helped the Salmonella cells to attach to the salad leaves so strongly that washing could not remove them. Collectively, the results presented in this report show that exposure to even traces of salad leaf juice may contribute to the persistence of Salmonella on salad leaves as well as priming it for establishing an infection in the consumer.


Subject(s)
Beta vulgaris/microbiology , Lactuca/microbiology , Plant Leaves/microbiology , Salmonella enterica/growth & development , Salmonella enterica/pathogenicity , Spinacia oleracea/microbiology , Bacterial Adhesion/drug effects , Beta vulgaris/chemistry , Biofilms/drug effects , Biofilms/growth & development , Colony Count, Microbial , Culture Media/chemistry , Food Microbiology , Lactuca/chemistry , Plant Leaves/chemistry , Plant Leaves/physiology , Salmonella enterica/drug effects , Salmonella enterica/physiology , Siderophores/biosynthesis , Spinacia oleracea/chemistry , Transferrin/metabolism , Virulence
14.
Sci Rep ; 6: 18536, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26725955

ABSTRACT

Several cell types develop extensive plasma membrane invaginations to serve a specific physiological function. For example, the megakaryocyte demarcation membrane system (DMS) provides a membrane reserve for platelet production and muscle transverse (T) tubules facilitate excitation:contraction coupling. Using impermeant fluorescent indicators, capacitance measurements and electron microscopy, we show that multiple cationic amphiphilic drugs (CADs) cause complete separation of the DMS from the surface membrane in rat megakaryocytes. This includes the calmodulin inhibitor W-7, the phospholipase-C inhibitor U73122, and anti-psychotic phenothiazines. CADs also caused loss of T tubules in rat cardiac ventricular myocytes and the open canalicular system of human platelets. Anionic amphiphiles, U73343 (a less electrophilic U73122 analogue) and a range of kinase inhibitors were without effect on the DMS. CADs are known to accumulate in the inner leaflet of the cell membrane where they bind to anionic lipids, especially PI(4,5)P2. We therefore propose that surface detachment of membrane invaginations results from an ability of CADs to interfere with PI(4,5)P2 interactions with cytoskeletal or BAR domain proteins. This establishes a detubulating action of a large class of pharmaceutical compounds.


Subject(s)
Cell Surface Extensions/drug effects , Estrenes/pharmacology , Phenothiazines/pharmacology , Pyrrolidinones/pharmacology , Sulfonamides/pharmacology , Animals , Cell Surface Extensions/physiology , Cells, Cultured , Drug Evaluation, Preclinical , Male , Megakaryocytes/physiology , Megakaryocytes/ultrastructure , Myocytes, Cardiac/physiology , Myocytes, Cardiac/ultrastructure , Rats, Wistar
15.
J Neurosci ; 34(7): 2684-8, 2014 Feb 12.
Article in English | MEDLINE | ID: mdl-24523557

ABSTRACT

Exposure to loud sound (acoustic overexposure; AOE) induces hearing loss and damages cellular structures at multiple locations in the auditory pathway. Whether AOE can also induce changes in myelin sheaths of the auditory nerve (AN) is an important issue particularly because these changes can be responsible for impaired action potential propagation along the AN. Here we investigate the effects of AOE on morphological and electrophysiological features of the centrally directed part of the rat AN projecting from the cochlear spiral ganglion to brainstem cochlear nuclei. Using electron microscopy and immunocytochemistry, we show that AOE elongates the AN nodes of Ranvier and triggers notable perinodal morphological changes. Compound action potential recordings of the AN coupled to biophysical modeling demonstrated that these nodal and perinodal structural changes were associated with decreased conduction velocity and conduction block. Furthermore, AOE decreased the number of release sites in the cochlear nuclei associated with the reduced amplitudes of EPSCs evoked by AN stimulation. In conclusion, AN dysmyelination may be of fundamental importance in auditory impairment following exposure to loud sound.


Subject(s)
Cochlear Nerve/pathology , Hearing Loss, Noise-Induced/pathology , Myelin Sheath/pathology , Ranvier's Nodes/pathology , Action Potentials/physiology , Animals , Cochlear Nerve/physiopathology , Disease Models, Animal , Evoked Potentials, Auditory/physiology , Excitatory Postsynaptic Potentials/physiology , Female , Hearing Loss, Noise-Induced/physiopathology , Male , Patch-Clamp Techniques , Rats , Rats, Wistar
16.
Glia ; 56(12): 1353-67, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18551624

ABSTRACT

Recent findings suggest that synaptic-type glutamate signaling operates between axons and their supporting glial cells. Glutamate reuptake will be a necessary component of such a system. Evidence for glutamate-mediated damage of oligodendroglia somata and processes in white matter suggests that glutamate regulation in white matter structures is also of clinical importance. The expression of glutamate transporters was examined in postnatal Day 14-17 (P14-17) mouse and in mature mouse and rat optic nerve using immuno-histochemistry and immuno-electron microscopy. EAAC1 was the major glutamate transporter detected in oligodendroglia cell membranes in both developing and mature optic nerve, while GLT-1 was the most heavily expressed transporter in the membranes of astrocytes. Both EAAC1 and GLAST were also seen in adult astrocytes, but there was little membrane expression of either at P14-17. GLAST, EAAC1, and GLT-1 were expressed in P14-17 axons with marked GLT-1 expression in the axolemma, while in mature axons EAAC1 was abundant at the node of Ranvier. Functional glutamate transport was probed in P14-17 mouse optic nerve revealing Na+-dependent, TBOA-blockable uptake of D-aspartate in astrocytes, axons, and oligodendrocytes. The data show that in addition to oligodendroglia and astrocytes, axons represent a potential source for extracellular glutamate in white matter during ischaemic conditions, and have the capacity for Na(+)-dependent glutamate uptake. The findings support the possibility of functional synaptic-type glutamate release from central axons, an event that will require axonal glutamate reuptake.


Subject(s)
Amino Acid Transport System X-AG/physiology , Axons/metabolism , Glutamic Acid/metabolism , Neuroglia/metabolism , Optic Nerve/metabolism , Amino Acid Transport System X-AG/ultrastructure , Animals , Axons/ultrastructure , Female , Male , Mice , Mice, Knockout , Mice, Transgenic , Neuroglia/ultrastructure , Optic Nerve/ultrastructure , Protein Transport/physiology
17.
J Cereb Blood Flow Metab ; 27(2): 334-47, 2007 Feb.
Article in English | MEDLINE | ID: mdl-16757980

ABSTRACT

Ischemia is implicated in periventricular white matter injury (PWMI), a lesion associated with cerebral palsy. PWMI features selective damage to early cells of the oligodendrocyte lineage, a phenomenon associated with glutamate receptor activation. We have investigated the distribution of glutamate in rat periventricular white matter at post-natal day 7. Immuno-electron microcopy was used to identify O4(+) oligodendroglia in control rats, and a similar approach was employed to stain glutamate in these cells before and after 90 mins of hypoxia-ischemia. This relatively brief period of hypoxia-ischemia produced mild cell injury, corresponding to the early stages of PWMI. Glutamate-like reactivity was higher in oligodendrocytes than in other cell types (2.13+/-0.25 counts/microm(2)), and declined significantly during hypoxia-ischemia (0.93+/-0.15 counts/microm(2): P<0.001). Astrocytes had lower glutamate levels (0.7+/-0.07 counts/microm(2)), and showed a relatively small decline during hypoxia-ischemia. Axonal regions contained high levels of glutamate (1.84+/-0.20 counts/microm(2)), much of which was lost during hypoxia-ischemia (0.72+/-0.20 counts/microm(2): P>0.001). These findings suggest that oligodendroglia and axons are the major source of extracellular glutamate in developing white matter during hypoxia-ischemia, and that astrocytes fail to accumulate the glutamate lost from these sources. We also examined glutamate levels in the choroid plexus. Control glutamate levels were high in both choroid epithelial (1.90+/-0.20 counts/microm(2)), and ependymal cells (2.20+/-0.28 counts/microm(2)), and hypoxia-ischemia produced a large fall in ependymal glutamate (0.97+/-0.08 counts/microm(2): P>0.001). The ependymal cells were damaged by the insult and represent a further potential source of glutamate during ischemia.


Subject(s)
Animals, Newborn/physiology , Axons/metabolism , Brain Chemistry/physiology , Glutamic Acid/metabolism , Hypoxia-Ischemia, Brain/metabolism , Oligodendroglia/metabolism , Animals , Astrocytes/metabolism , Astrocytes/ultrastructure , Axons/ultrastructure , Cell Lineage/physiology , Choroid/metabolism , Ependyma/metabolism , Microscopy, Immunoelectron , Oligodendroglia/ultrastructure , Rats , Rats, Sprague-Dawley , Terminology as Topic
18.
J Neuropathol Exp Neurol ; 63(8): 856-71, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15330340

ABSTRACT

Cerebral palsy is a common birth disorder that frequently involves ischemic-type injury to developing white matter (WM). Dead glial cells are a common feature of this injury and here we describe a novel form of acute ischemic cell death in developing WM astrocytes. Ischemia, modeled by the withdrawal of oxygen and glucose, evoked [Ca2+]i increases and cell death in astrocytes in post-natal day 10 (P10) rat optic nerve (RON). Removing extracellular Ca2+ prevented increases in [Ca2+]i but increased the amount of cell death. Astrocytes showed rapid [Na+]i increases during ischemia and cell death was reduced to control levels by substitution of extracellular Na+ or Cl- or by perfusion with bumetanide, a selective Na-K-Cl cotransport (NKCC) blocker. Astrocytes showed marked swelling during ischemia in the absence of extracellular Ca2+, which was blocked by bumetanide. Raising the extracellular osmolarity to limit water uptake reduced ischemic astrocyte death to control levels. Ultrastructural examination showed that post-ischemic astrocytes had lost their processes and frequently were necrotic, effects partially prevented by bumetanide. At this point in development, therefore, NKCC activation in astrocytes during ischemia produces an osmo-regulatory challenge. Astrocytes can subsequently regulate their cell volume in a Ca2+-dependent fashion but this will require ATP hydrolysis and does not protect the cells against acute cell death.


Subject(s)
Astrocytes/metabolism , Astrocytes/pathology , Brain Ischemia/metabolism , Calcium/metabolism , Nerve Fibers, Myelinated/metabolism , Sodium-Potassium-Chloride Symporters/metabolism , Acute Disease , Animals , Biological Transport, Active , Brain Ischemia/pathology , Calcium/physiology , Calcium Signaling/physiology , Female , In Vitro Techniques , Male , Nerve Fibers, Myelinated/pathology , Rats , Rats, Long-Evans
19.
J Neuropathol Exp Neurol ; 63(8): 872-81, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15330341

ABSTRACT

In developing CNS white matter (WM), the period of early myelination is characterized by a heightened sensitivity to ischemic injury. Using an in situ (isolated) preparation, we show that the mechanism of acute ischemic injury of immature WM oligodendroglial involves Ca2+ influx though non-NMDA type glutamate receptors (GluRs). The Ca2+-influx and acute cell death that was evoked by ischemic conditions (oxygen and glucose withdrawal) in identified P10 rat optic nerve oligodendroglia were blocked by removing extracellular Ca2+ or by CNQX, a selective non-NMDA GluR antagonist. The selective Na-K-Cl cotransport (NKCC) inhibitor bumetanide was also highly protective, even though NKCC expression is restricted to astrocytes in this tissue. Bumetanide largely prevented the non-NMDA GluR-mediated [Ca2+]i rise evoked by ischemia in oligodendroglia, suggesting that it interfered with ischemic glutamate release. In control WM, glutamate-like reactivity was located mainly in astrocytes and oligodendroglia identified using ultrastructural criteria. In ischemic WM, astrocyte glutamate-like reactivity was reduced, an effect countered by bumetanide. We suggest a model in which NKCC-dependent injury and release of glutamate from astrocytes activates glutamate receptors on oligodendroglia, resulting in Ca2+-influx and acute cell death.


Subject(s)
Astrocytes/pathology , Brain Ischemia/metabolism , Brain Ischemia/pathology , Glutamic Acid/metabolism , Nerve Fibers, Myelinated/pathology , Oligodendroglia/metabolism , Acute Disease , Animals , Astrocytes/metabolism , Cell Death/physiology , Female , Male , Nerve Fibers, Myelinated/metabolism , Oligodendroglia/pathology , Rats , Rats, Long-Evans
SELECTION OF CITATIONS
SEARCH DETAIL
...