Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 13(5): 3004-3007, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36756439

ABSTRACT

1H-NMR spin lattice relaxation times (T 1), measured by inversion recovery technique, allowed to establish the stoichiometric coefficient (ratio between the H-bond acceptor and H-bond donor) of a series of trimethylglycine betaine/diol based deep eutectic solvents (DESs); ethylene glycol, triethylene glycol and 1,3-propandiol were selected as H-bond donors. The maximum amount of water tolerated by the DES, before its complete hydration, was determined as well. Finally, the method was validated comparing the eutectic composition of the betaine/glycol system with that determined by means of differential scanning calorimetry analysis; the stoichiometric coefficients were identical.

2.
Molecules ; 27(24)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36558011

ABSTRACT

In the present work, rice husks (RHs), which, worldwide, represent one of the most abundant agricultural wastes in terms of their quantity, have been treated and fractionated in order to allow for their complete valorization. RHs coming from the raw and parboiled rice production have been submitted at first to a hydrothermal pretreatment followed by a deep eutectic solvent fractionation, allowing for the separation of the different components by means of an environmentally friendly process. The lignins obtained from raw and parboiled RHs have been thoroughly characterized and showed similar physico-chemical characteristics, indicating that the parboiling process does not introduce obvious lignin alterations. In addition, a preliminary evaluation of the potentiality of such lignin fractions as precursors of cement water reducers has provided encouraging results. A fermentation-based optional preprocess has also been investigated. However, both raw and parboiled RHs demonstrated a poor performance as a microbiological growth substrate, even in submerged fermentation using cellulose-degrading fungi. The described methodology appears to be a promising strategy for the valorization of these important waste biomasses coming from the rice industry towards a circular economy perspective.


Subject(s)
Lignin , Oryza , Lignin/chemistry , Oryza/chemistry , Deep Eutectic Solvents , Cellulose , Solvents/chemistry , Biomass , Hydrolysis
3.
Molecules ; 25(12)2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32586065

ABSTRACT

Technical lignins, typically obtained from the biorefining of lignocellulosic raw materials, represent a highly abundant natural aromatic feedstock with high potential in a sustainable economy scenario, especially considering the huge primary production volumes and the inherently renewable nature of this resource. One of the main drawbacks in their full exploitation is their high variability and heterogeneity in terms of chemical composition and molecular weight distribution. Within this context, the availability of effective and robust fractionation processes represents a key requirement for the effective valorization of lignin. In the present work, a multistep fractionation of two different well known technical lignins obtained from two distinct delignification processes (soda vs. kraft pulping) was described. A comprehensive approach combining solvent extraction in organic or aqueous medium with membrane-assisted ultrafiltration was developed in order to maximize the process versatility. The obtained lignin fractions were thoroughly characterized in terms of their chemical, physical, thermal, and structural properties, highlighting the ability of the proposed approach to deliver consistent and reproducible fractions of well-controlled and predictable characteristics, irrespective of their biomass origin. The results of this study demonstrate the versatility and the reliability of this integrated multistep fractionation method, which can be easily adapted to different solvent media using the same ultrafiltration membrane set up, thereby enhancing the potential applicability of this approach in an industrial scale-up perspective for a large variety of starting raw lignins.


Subject(s)
Chemical Fractionation/methods , Lignin/chemistry , Membranes, Artificial , Solvents/chemistry , Ultrafiltration/methods , Calorimetry, Differential Scanning , Chromatography, Gel , Gas Chromatography-Mass Spectrometry , Hydroxylation , Magnetic Resonance Spectroscopy , Molecular Weight , Solubility , Spectroscopy, Fourier Transform Infrared
4.
ACS Omega ; 4(3): 4615-4626, 2019 Mar 31.
Article in English | MEDLINE | ID: mdl-31459649

ABSTRACT

A fractionation method for technical lignin was developed, combining organic solvent extraction and membrane ultrafiltration of the solvent soluble component. This method was validated on a commercial wheat straw/Sarkanda grass lignin (Protobind 1000) using 2-butanone (MEK) as the solvent for both the extraction and the ultrafiltration operations. The parent lignin and the different obtained fractions were fully characterized in terms of chemical composition and physicochemical properties by gel permeation chromatography, gas chromatography/mass spectrometry (GC/MS), pyrolysis-GC/MS, total phenol contents, 31P nuclear magnetic resonance (31P NMR), thermogravimetric analysis, differential scanning calorimetry analysis, and Fourier-transform infrared spectroscopy. The results show that the proposed process allows a straightforward recovery of the different lignin fractions as well as a selective control over their molecular mass distribution and related dependent properties. Moreover, the operating flexibility of the Soxhlet/ultrafiltration process allows the treatment of lignins from different feedstocks using the same installation just by modulating the choice of the solvent and the membrane porosity with the best characteristics. This is one of the most important features of the proposed strategy, which represents a new fractionation approach with the potential to improve lignin valorization for materials science and preparative organic chemistry applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...