Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Int J Mol Sci ; 21(13)2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32630050

ABSTRACT

Inherited bone marrow failure syndromes (IBMFS) are a group of cancer-prone genetic diseases characterized by hypocellular bone marrow with impairment in one or more hematopoietic lineages. The pathogenesis of IBMFS involves mutations in several genes which encode for proteins involved in DNA repair, telomere biology and ribosome biogenesis. The classical IBMFS include Shwachman-Diamond syndrome (SDS), Diamond-Blackfan anemia (DBA), Fanconi anemia (FA), dyskeratosis congenita (DC), and severe congenital neutropenia (SCN). IBMFS are associated with high risk of myelodysplastic syndrome (MDS), acute myeloid leukemia (AML), and solid tumors. Unfortunately, no specific pharmacological therapies have been highly effective for IBMFS. Hematopoietic stem cell transplantation provides a cure for aplastic or myeloid neoplastic complications. However, it does not affect the risk of solid tumors. Since approximately 28% of FA, 24% of SCN, 21% of DBA, 20% of SDS, and 17% of DC patients harbor nonsense mutations in the respective IBMFS-related genes, we discuss the use of the nonsense suppression therapy in these diseases. We recently described the beneficial effect of ataluren, a nonsense suppressor drug, in SDS bone marrow hematopoietic cells ex vivo. A similar approach could be therefore designed for treating other IBMFS. In this review we explain in detail the new generation of nonsense suppressor molecules and their mechanistic roles. Furthermore, we will discuss strengths and limitations of these molecules which are emerging from preclinical and clinical studies. Finally we discuss the state-of-the-art of preclinical and clinical therapeutic studies carried out for IBMFS.


Subject(s)
Aminoglycosides/therapeutic use , Codon, Nonsense/drug effects , Congenital Bone Marrow Failure Syndromes/therapy , Nonsense Mediated mRNA Decay/drug effects , Oxadiazoles/therapeutic use , Aminoglycosides/pharmacology , Congenital Bone Marrow Failure Syndromes/genetics , Humans , Oxadiazoles/pharmacology
2.
Cancers (Basel) ; 12(3)2020 03 05.
Article in English | MEDLINE | ID: mdl-32150944

ABSTRACT

Shwachman-Diamond syndrome (SDS) is a rare inherited bone marrow failure syndrome, resulting in neutropenia and a risk of myeloid neoplasia. A mutation in a ribosome maturation factor accounts for almost all of the cases. Lymphoid involvement in SDS has not been well characterized. We recently reported that lymphocyte subpopulations are reduced in SDS patients. We have also shown that the mTOR-STAT3 pathway is hyper-activated in SDS myeloid cell populations. Here we show that mTOR-STAT3 signaling is markedly upregulated in the lymphoid compartment of SDS patients. Furthermore, our data reveal elevated IL-6 levels in cellular supernatants obtained from lymphoblasts, bone marrow mononuclear and mesenchymal stromal cells, and plasma samples obtained from a cohort of 10 patients. Of note, everolimus-mediated inhibition of mTOR signaling is associated with basal state of phosphorylated STAT3. Finally, inhibition of mTOR-STAT3 pathway activation leads to normalization of IL-6 expression in SDS cells. Altogether, our data strengthen the hypothesis that SDS affects both lymphoid and myeloid blood compartment and suggest everolimus as a potential therapeutic agent to reduce excessive mTOR-STAT3 activation in SDS.

3.
Mediators Inflamm ; 2018: 5974613, 2018.
Article in English | MEDLINE | ID: mdl-30116149

ABSTRACT

Inflammation may play a role in cancer. However, the contribution of cytokine-mediated crosstalk between normal hemopoietic stem/progenitor cells (HSPCs) and their (inflammatory) microenvironment is largely elusive. Here we compared survival, phenotype, and function of neonatal (umbilical cord blood (CB)) and adult (normal G-CSF-mobilized peripheral blood (mPB)) CD34+ cells after in vitro exposure to combined crucial inflammatory factors such as interleukin- (IL-) 1ß, IL-6, tumor necrosis factor- (TNF-) α, or tissue inhibitor of metalloproteinases-1 (TIMP-1). To mimic bone marrow (BM) niche, coculture experiments with normal BM stromal cells (BMSCs) were also performed. We found that combined inflammatory cytokines increased only the in vitro survival of CB-derived CD34+ cells by reducing apoptosis. Conversely, selected combinations of inflammatory cytokines (IL-1ß + TNF-α, IL-6 + TNF-α, and IL-1ß + TNF-α + TIMP-1) mainly enhanced the in vitro CXCR4-driven migration of mPB-derived CD34+ cells. TNF-α, alone or in combination, upregulated CD44 and CD13 expression in both sources. Finally, BMSCs alone increased survival/migration of CB- and mPB-derived CD34+ cells at the same extent of the combined inflammatory cytokines; importantly, their copresence did not show additive/synergistic effect. Taken together, these data indicate that combined proinflammatory stimuli promote distinct in vitro functional activation of neonatal or adult normal HSPCs.


Subject(s)
Cell Movement , Cytokines/metabolism , Fetal Blood/metabolism , Hematopoietic Stem Cell Mobilization , Inflammation/metabolism , Leukocytes, Mononuclear/cytology , Antigens, CD34/metabolism , Apoptosis , Cell Survival , Coculture Techniques , Erythrocytes/cytology , Granulocyte Colony-Stimulating Factor , Humans , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...