Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Metab Dispos ; 38(6): 963-72, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20200233

ABSTRACT

Three secondary amines desipramine (DES), (S)-fluoxetine [(S)-FLX], and N-desmethyldiltiazem (MA) undergo N-hydroxylation to the corresponding secondary hydroxylamines [N-hydroxydesipramine, (S)-N-hydroxyfluoxetine, and N-hydroxy-N-desmethyldiltiazem] by cytochromes P450 2C11, 2C19, and 3A4, respectively. The expected primary amine products, N-desmethyldesipramine, (S)-norfluoxetine, and N,N-didesmethyldiltiazem, are also observed. The formation of metabolic-intermediate (MI) complexes from these substrates and metabolites was examined. In each example, the initial rates of MI complex accumulation followed the order secondary hydroxylamine > secondary amine >> primary amine, suggesting that the primary amine metabolites do not contribute to formation of MI complexes from these secondary amines. Furthermore, the primary amine metabolites, which accumulate in incubations of the secondary amines, inhibit MI complex formation. Mass balance studies provided estimates of the product ratios of N-dealkylation to N-hydroxylation. The ratios were 2.9 (DES-CYP2C11), 3.6 [(S)-FLX-CYP2C19], and 0.8 (MA-CYP3A4), indicating that secondary hydroxylamines are significant metabolites of the P450-mediated metabolism of secondary alkyl amines. Parallel studies with N-methyl-d(3)-desipramine and CYP2C11 demonstrated significant isotopically sensitive switching from N-demethylation to N-hydroxylation. These findings demonstrate that the major pathway to MI complex formation from these secondary amines arises from N-hydroxylation rather than N-dealkylation and that the primary amines are significant competitive inhibitors of MI complex formation.


Subject(s)
Aryl Hydrocarbon Hydroxylases/metabolism , Cytochrome P-450 CYP3A/metabolism , Desipramine/analogs & derivatives , Diltiazem/analogs & derivatives , Fluoxetine/pharmacology , Imipramine/analogs & derivatives , Microsomes, Liver/metabolism , Cytochrome P-450 CYP2B6 , Cytochrome P-450 CYP2C19 , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P450 Family 2 , Desipramine/metabolism , Desipramine/pharmacology , Diltiazem/metabolism , Fluoxetine/analogs & derivatives , Fluoxetine/metabolism , Humans , Hydroxylamine , Hydroxylamines/metabolism , Hydroxylation , Imipramine/metabolism , Imipramine/pharmacology , Oxidoreductases, N-Demethylating/metabolism , Steroid 16-alpha-Hydroxylase/metabolism
2.
J Pharmacol Exp Ther ; 321(1): 389-99, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17259447

ABSTRACT

Methadone is administered as a racemate, although opioid activity resides in the R-enantiomer. Methadone disposition is stereoselective, with considerable unexplained variability in clearance and plasma R/S ratios. N-Demethylation of methadone in vitro is predominantly mediated by cytochrome P450 CYP3A4 and CYP2B6 and somewhat by CYP2C19. This investigation evaluated stereoselectivity, models, and kinetic parameters for methadone N-demethylation by recombinant CYP2B6, CYP3A4, and CYP2C19, and the potential for interactions between enantiomers during racemate metabolism. CYP2B6 metabolism was stereoselective. CYP2C19 was less active, and stereoselectivity was opposite that for CYP2B6. CYP3A4 was not stereoselective. With all three isoforms, enantiomer N-dealkylation rates in the racemate were lower than those of (R)-(6-dimethyamino-4,4-diphenyl-heptan-3-one) hydrochloride (R-methadone) or (S)-(6-dimethyamino-4,4-diphenyl-heptan-3-one) hydrochloride (S-methadone) alone, suggesting an enantiomeric interaction and mutual metabolic inhibition. For CYP2B6, the interaction between enantiomers was stereoselective, with S-methadone as a more potent inhibitor of R-methadone N-demethylation than R-of S-methadone. In contrast, enantiomer interactions were not stereoselective with CYP2C19 or CYP3A4. For all three cytochromes P450, methadone N-demethylation was best described by two-site enzyme models with competitive inhibition. There were minor model differences between cytochromes P450 to account for stereoselectivity of metabolism and enantiomeric interactions. Changes in plasma R/S methadone ratios observed after rifampin or troleandomycin pretreatment in humans in vivo were successfully predicted by CYP2B6- but not CYP3A4-catalyzed methadone N-demethylation. CYP2B6 is a predominant catalyst of stereoselective methadone metabolism in vitro. In vivo, CYP2B6 may be a major determinant of methadone metabolism and disposition, and CYP2B6 activity and stereoselective metabolic interactions may confer variability in methadone disposition.


Subject(s)
Methadone/metabolism , Narcotics/metabolism , Algorithms , Aryl Hydrocarbon Hydroxylases/metabolism , Bridged Bicyclo Compounds, Heterocyclic , Cyclooxygenase 2 Inhibitors/pharmacology , Cytochrome P-450 CYP2B6 , Cytochrome P-450 CYP2C19 , Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme Inhibitors , Cytochrome P-450 Enzyme System/metabolism , Dealkylation , Enzyme Induction/drug effects , Enzyme Inhibitors/pharmacology , Fatty Acids, Unsaturated , Humans , Hydrazines/pharmacology , Kinetics , Methadone/chemistry , Mixed Function Oxygenases/metabolism , Narcotics/chemistry , Nitrobenzenes/pharmacology , Oxidoreductases, N-Demethylating/metabolism , Rifampin/pharmacology , Stereoisomerism , Sulfonamides/pharmacology , Superoxides/metabolism , Thiobarbituric Acid Reactive Substances
3.
Biochemistry ; 44(43): 14143-51, 2005 Nov 01.
Article in English | MEDLINE | ID: mdl-16245930

ABSTRACT

Recent studies have indicated that CYP3A4 exhibits non-Michaelis-Menten kinetics for numerous substrates. Both homo- and heterotropic activation have been reported, and kinetic models have suggested multiple substrates within the active site. We provide some of the first physicochemical data supporting the hypothesis of allosteric substrate binding within the CYP3A4 active site. Midazolam (MDZ) is metabolized by CYP3A4 to two hydroxylated metabolites, 1'- and 4-hydroxymidazolam. Incubations using purified CYP3A4 and MDZ showed that both alpha-naphthoflavone (alpha-NF) and testosterone affect the ratio of formation rates of 1'- and 4-hydroxymidazolam. Similar to previous reports, alpha-NF was found to promote formation of 1'-hydroxymidazolam, while testosterone stimulated formation of 4-hydroxymidazolam. NMR was used to measure the closest approach of individual MDZ protons to the paramagnetic heme iron of CYP3A4 using paramagnetic T(1) relaxation measurements. Solutions of 0.2 microM CYP3A4 with 500 microM MDZ resulted in calculated distances between 7.4 and 8.3 A for all monitored MDZ protons. The distances were statistically equivalent for all protons except C3-H and were consistent with the rotation within the active site or sliding parallel to the heme plane. When 50 microM alpha-NF was added, proton-heme iron distances ranged from 7.3 to 10.0 A. Consistent with kinetics of activation, the 1' position was situated closest to the heme, while the fluorophenyl 5-H proton was the furthest. Proton-heme iron distances for MDZ with CYP3A4 and 50 microM testosterone ranged from 7.7 to 9.0 A, with the flourophenyl 5-H proton furthest from the heme iron and the C4-H closest to the heme, also consistent with kinetic observations. When titrated with CYP3A4 in the presence of MDZ, testosterone and alpha-NF resonances themselves exhibited significant broadening and enhanced relaxation rates, indicating that these effector molecules were also bound within the CYP3A4 active site near the paramagnetic heme iron. These results suggest that the effector exerts its cooperative effects on MDZ metabolism through simultaneous binding of MDZ and effector near the CYP3A4 heme.


Subject(s)
Benzoflavones/metabolism , Cytochrome P-450 Enzyme System/metabolism , Midazolam/metabolism , Testosterone/metabolism , Binding Sites , Cytochrome P-450 CYP3A , Heme/chemistry , Kinetics , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Midazolam/analogs & derivatives , Protons
4.
Drug Metab Dispos ; 32(10): 1121-31, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15242978

ABSTRACT

Itraconazole (ITZ) is a potent inhibitor of CYP3A in vivo. However, unbound plasma concentrations of ITZ are much lower than its reported in vitro Ki, and no clinically significant interactions would be expected based on a reversible mechanism of inhibition. The purpose of this study was to evaluate the reasons for the in vitro-in vivo discrepancy. The metabolism of ITZ by CYP3A4 was studied. Three metabolites were detected: hydroxy-itraconazole (OH-ITZ), a known in vivo metabolite of ITZ, and two new metabolites: keto-itraconazole (keto-ITZ) and N-desalkyl-itraconazole (ND-ITZ). OHITZ and keto-ITZ were also substrates of CYP3A4. Using a substrate depletion kinetic approach for parameter determination, ITZ exhibited an unbound K(m) of 3.9 nM and an intrinsic clearance (CLint) of 69.3 ml.min(-1).nmol CYP3A4(-1). The respective unbound Km values for OH-ITZ and keto-ITZ were 27 nM and 1.4 nM and the CLint values were 19.8 and 62.5 ml.min(-1).nmol CYP3A4(-1). Inhibition of CYP3A4 by ITZ, OH-ITZ, keto-ITZ, and ND-ITZ was evaluated using hydroxylation of midazolam as a probe reaction. Both ITZ and OH-ITZ were competitive inhibitors of CYP3A4, with unbound Ki (1.3 nM for ITZ and 14.4 nM for OH-ITZ) close to their respective Km. ITZ, OH-ITZ, keto-ITZ and ND-ITZ exhibited unbound IC50 values of 6.1 nM, 4.6 nM, 7.0 nM, and 0.4 nM, respectively, when coincubated with human liver microsomes and midazolam (substrate concentration < Km). These findings demonstrate that ITZ metabolites are as potent as or more potent CYP3A4 inhibitors than ITZ itself, and thus may contribute to the inhibition of CYP3A4 observed in vivo after ITZ dosing.


Subject(s)
Cytochrome P-450 Enzyme Inhibitors , Cytochrome P-450 Enzyme System/metabolism , Itraconazole/metabolism , Itraconazole/pharmacology , Cytochrome P-450 CYP3A , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Humans , Microsomes, Liver/drug effects , Microsomes, Liver/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...