Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 89(10): 6639-6650, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38651358

ABSTRACT

We describe an optimization and scale-up of the 45-membered macrocyclic thioether peptide BMS-986189 utilizing solid-phase peptide synthesis (SPPS). Improvements to linear peptide isolation, macrocyclization, and peptide purification were demonstrated to increase the throughput and purification of material on scale and enabled the synthesis and purification of >60 g of target peptide. Taken together, not only these improvements resulted in a 28-fold yield increase from the original SPPS approach, but also the generality of this newly developed SPPS purification sequence has found application in the synthesis and purification of other macrocyclic thioether peptides.


Subject(s)
Macrocyclic Compounds , Peptides , Solid-Phase Synthesis Techniques , Sulfides , Sulfides/chemistry , Sulfides/chemical synthesis , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/chemical synthesis , Peptides/chemistry , Peptides/chemical synthesis , Peptides, Cyclic/chemistry , Peptides, Cyclic/chemical synthesis , Molecular Structure , Cyclization
2.
Org Lett ; 19(22): 6196-6199, 2017 11 17.
Article in English | MEDLINE | ID: mdl-29115835

ABSTRACT

Tetrachloro-N-hydroxyphthalimide tetramethyluronium hexafluorophosphate (CITU) is disclosed as a convenient and economical reagent for both acylation and decarboxylative cross-coupling chemistries. Within the former set of reactions, CITU displays reactivity similar to that of common coupling reagents, but with increased safety and reduced cost. Within the latter, increased yields, more rapid conversion, and a simplified procedure are possible across a range of reported decarboxylative transformations.


Subject(s)
Peptides/chemistry , Acylation , Indicators and Reagents , Molecular Structure
3.
ACS Med Chem Lett ; 6(7): 770-5, 2015 Jul 09.
Article in English | MEDLINE | ID: mdl-26191364

ABSTRACT

A series of dimeric macrocyclic compounds were prepared and evaluated as antagonists for inhibitor of apoptosis proteins. The most potent analogue 11, which binds to XIAP and c-IAP proteins with high affinity and induces caspase-3 activation and ultimately cell apoptosis, inhibits growth of human melanoma and colorectal cell lines at low nanomolar concentrations. Furthermore, compound 11 demonstrated significant antitumor activity in the A875 human melanoma xenograft model at doses as low as 2 mg/kg on a q3d schedule.

4.
Bioorg Med Chem Lett ; 20(2): 503-7, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-20015649

ABSTRACT

The design and synthesis of novel opiates are reported. Based on the message-address principle a novel class of 4,4- and 3,3-biaryl piperidines was designed and synthesized. Biological evaluation confirmed that these compounds exhibit high affinity and selectivity for the delta opioid receptor. Key structure-activity relationships that influence affinity, selectivity, functional activity and clearance are reported.


Subject(s)
Ligands , Piperidines/chemistry , Receptors, Opioid, delta/antagonists & inhibitors , Animals , Drug Design , Humans , Microsomes, Liver/metabolism , Piperidines/chemical synthesis , Piperidines/pharmacology , Protein Binding , Rats , Receptors, Opioid, delta/metabolism , Receptors, Opioid, kappa/antagonists & inhibitors , Receptors, Opioid, kappa/metabolism , Receptors, Opioid, mu/antagonists & inhibitors , Receptors, Opioid, mu/metabolism , Structure-Activity Relationship
5.
J Med Chem ; 50(2): 182-5, 2007 Jan 25.
Article in English | MEDLINE | ID: mdl-17228859

ABSTRACT

A papaverine based pharmacophore model for PDE10A inhibition was generated via SBDD and used to design a library of 4-amino-6,7-dimethoxyquinazolines. From this library emerged an aryl ether pyrrolidyl 6,7-dimethoxyquinazoline series that became the focal point for additional modeling, X-ray, and synthetic efforts toward increasing PDE10A inhibitory potency and selectivity versus PDE3A/B. These efforts culminated in the discovery of 29, a potent and selective brain penetrable inhibitor of PDE10A.


Subject(s)
Phosphodiesterase Inhibitors/chemical synthesis , Phosphoric Diester Hydrolases/metabolism , Pyrrolidines/chemical synthesis , Quinazolines/chemical synthesis , Animals , Corpus Striatum/metabolism , Crystallography, X-Ray , Cyclic GMP/metabolism , Mice , Models, Molecular , Phosphodiesterase Inhibitors/chemistry , Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/chemistry , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Quinazolines/chemistry , Quinazolines/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...