Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Hum Genomics ; 17(1): 83, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37670378

ABSTRACT

BACKGROUND: RUNX1 is a transcription factor and a master regulator for the specification of the hematopoietic lineage during embryogenesis and postnatal megakaryopoiesis. Mutations and rearrangements on RUNX1 are key drivers of hematological malignancies. In humans, this gene is localized to the 'Down syndrome critical region' of chromosome 21, triplication of which is necessary and sufficient for most phenotypes that characterize Trisomy 21. MAIN BODY: Individuals with Down syndrome show a higher predisposition to leukemias. Hence, RUNX1 overexpression was initially proposed as a critical player on Down syndrome-associated leukemogenesis. Less is known about the functions of RUNX1 in other tissues and organs, although growing reports show important implications in development or homeostasis of neural tissues, muscle, heart, bone, ovary, or the endothelium, among others. Even less is understood about the consequences on these tissues of RUNX1 gene dosage alterations in the context of Down syndrome. In this review, we summarize the current knowledge on RUNX1 activities outside blood/leukemia, while suggesting for the first time their potential relation to specific Trisomy 21 co-occurring conditions. CONCLUSION: Our concise review on the emerging RUNX1 roles in different tissues outside the hematopoietic context provides a number of well-funded hypotheses that will open new research avenues toward a better understanding of RUNX1-mediated transcription in health and disease, contributing to novel potential diagnostic and therapeutic strategies for Down syndrome-associated conditions.


Subject(s)
Down Syndrome , Female , Humans , Core Binding Factor Alpha 2 Subunit , Hematopoiesis , Chromosomes, Human, Pair 21 , Carcinogenesis
2.
Stem Cell Reports ; 18(6): 1325-1339, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37315524

ABSTRACT

Skeletal muscle function and regenerative capacity decline during aging, yet factors driving these changes are incompletely understood. Muscle regeneration requires temporally coordinated transcriptional programs to drive myogenic stem cells to activate, proliferate, fuse to form myofibers, and to mature as myonuclei, restoring muscle function after injury. We assessed global changes in myogenic transcription programs distinguishing muscle regeneration in aged mice from young mice by comparing pseudotime trajectories from single-nucleus RNA sequencing of myogenic nuclei. Aging-specific differences in coordinating myogenic transcription programs necessary for restoring muscle function occur following muscle injury, likely contributing to compromised regeneration in aged mice. Differences in pseudotime alignment of myogenic nuclei when comparing aged with young mice via dynamic time warping revealed pseudotemporal differences becoming progressively more severe as regeneration proceeds. Disruptions in timing of myogenic gene expression programs may contribute to incomplete skeletal muscle regeneration and declines in muscle function as organisms age.


Subject(s)
Cell Nucleus , Stem Cells , Animals , Mice , Aging/genetics , Muscle, Skeletal , Gene Expression
3.
bioRxiv ; 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36712041

ABSTRACT

Heat shock stress induces genome wide changes in transcription regulation, activating a coordinated cellular response to enable survival. Using publicly available transcriptomic and proteomic data sets comparing individuals with and without trisomy 21, we noticed many heat shock genes are up-regulated in blood samples from individuals with trisomy 21. Yet no major heat shock response regulating transcription factor is encoded on chromosome 21, leaving it unclear why trisomy 21 itself would cause a heat shock response, or how it would impact the ability of blood cells to subsequently respond when faced with heat shock stress. To explore these issues in a context independent of any trisomy 21 associated co-morbidities or developmental differences, we characterized the response to heat shock of two lymphoblastoid cell lines derived from brothers with and without trisomy 21. To carefully compare the chromatin state and the transcription status of these cell lines, we measured nascent transcription, chromatin accessibility, and single cell transcript levels in the lymphoblastoid cell lines before and after acute heat shock treatment. The trisomy 21 cells displayed a more robust heat shock response after just one hour at 42°C than the matched disomic cells. We suggest multiple potential mechanisms for this increased heat shock response in lymphoblastoid cells with trisomy 21 including the possibility that cells with trisomy 21 may exist in a hyper-reactive state due to chronic stresses. Whatever the mechanism, abnormal heat shock response in individuals with Down syndrome may hobble immune responses during fever and contribute to health problems in these individuals.

4.
Elife ; 3: e02200, 2014 May 27.
Article in English | MEDLINE | ID: mdl-24867637

ABSTRACT

The p53 transcription factor is a potent suppressor of tumor growth. We report here an analysis of its direct transcriptional program using Global Run-On sequencing (GRO-seq). Shortly after MDM2 inhibition by Nutlin-3, low levels of p53 rapidly activate ∼200 genes, most of them not previously established as direct targets. This immediate response involves all canonical p53 effector pathways, including apoptosis. Comparative global analysis of RNA synthesis vs steady state levels revealed that microarray profiling fails to identify low abundance transcripts directly activated by p53. Interestingly, p53 represses a subset of its activation targets before MDM2 inhibition. GRO-seq uncovered a plethora of gene-specific regulatory features affecting key survival and apoptotic genes within the p53 network. p53 regulates hundreds of enhancer-derived RNAs. Strikingly, direct p53 targets harbor pre-activated enhancers highly transcribed in p53 null cells. Altogether, these results enable the study of many uncharacterized p53 target genes and unexpected regulatory mechanisms.DOI: http://dx.doi.org/10.7554/eLife.02200.001.


Subject(s)
Transcription, Genetic/physiology , Tumor Suppressor Protein p53/physiology , Apoptosis/genetics , Binding Sites , Cell Line , Humans , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , RNA/metabolism , Tumor Suppressor Protein p53/metabolism
5.
Biochem J ; 459(1): 229-39, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24467409

ABSTRACT

Human coagulation FXa (Factor Xa) plays a key role in blood coagulation by activating prothrombin to thrombin on 'stimulated' platelet membranes in the presence of its cofactor FVa (Factor Va). PS (phosphatidylserine) exposure on activated platelet membranes promotes prothrombin activation by FXa by allosterically regulating FXa. To identify the structural basis of this allosteric regulation, we used FRET to monitor changes in FXa length in response to (i) soluble short-chain PS [C6PS (dicaproylphosphatidylserine)], (ii) PS membranes, and (iii) FVa in the presence of C6PS and membranes. We incorporated a FRET pair with donor (fluorescein) at the active site and acceptor (Alexa Fluor® 555) at the FXa N-terminus near the membrane. The results demonstrated that FXa structure changes upon binding of C6PS to two sites: a regulatory site at the N-terminus [identified previously as involving the Gla (γ-carboxyglutamic acid) and EGFN (N-terminus of epidermal growth factor) domains] and a presumptive protein-recognition site in the catalytic domain. Binding of C6PS to the regulatory site increased the interprobe distance by ~3 Å (1 Å=0.1 nm), whereas saturation of both sites increased the distance by a further ~6.4 Å. FXa binding to a membrane produced a smaller increase in length (~1.4 Å), indicating that FXa has a somewhat different structure on a membrane from when bound to C6PS in solution. However, when both FVa2 (a FVa glycoform) and either C6PS- or PS-containing membranes were bound to FXa, the overall change in length was comparable (~5.6-5.8 Å), indicating that C6PS- and PS-containing membranes in conjunction with FVa2 have comparable regulatory effects on FXa. We conclude that the similar functional regulation of FXa by C6PS or membranes in conjunction with FVa2 correlates with similar structural regulation. The results demonstrate the usefulness of FRET in analysing structure-function relationships in FXa and in the FXa·FVa2 complex.


Subject(s)
Factor Va/physiology , Factor Xa/chemistry , Factor Xa/metabolism , Phosphatidylserines/metabolism , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , Cell Line , Cricetinae , Humans , Phosphatidylserines/pharmacology , Protein Binding/physiology , Quantitative Structure-Activity Relationship
6.
J Biol Chem ; 286(41): 35535-35542, 2011 Oct 14.
Article in English | MEDLINE | ID: mdl-21859710

ABSTRACT

Constituents of platelet membranes regulate the activity of the prothrombinase complex. We demonstrate that membranes containing phosphatidylcholine and phosphatidylethanolamine (PE) bind factor Va with high affinity (K(d) = ∼10 nm) in the absence of phosphatidylserine (PS). These membranes support formation of a 60-70% functional prothrombinase complex at saturating factor Va concentrations. Although reduced interfacial packing does contribute to factor Va binding in the absence of PS, it does not correlate with the enhanced activity of the Xa-Va complex assembled on PE-containing membranes. Instead, specific protein-PE interactions appear to contribute to the effects of PE. In support of this, soluble C6PE binds to recombinant factor Va(2) (K(d) = ∼6.5 µm) and to factor Xa (K(d) = ∼91 µm). C6PE and C6PS binding sites of factor Xa are specific, distinct, and linked, because binding of one lipid enhances the binding and activity effects of the other. C6PE triggers assembly (K(d)(app) = ∼40 nm) of a partially active prothrombinase complex between factor Xa and factor Va(2), compared with K(d)(app) for C6PS ∼2 nm. These findings provide new insights into the possible synergistic roles of platelet PE and PS in regulating thrombin formation, particularly when exposed membrane PS may be limiting.


Subject(s)
Factor V/chemistry , Factor Va/chemistry , Factor Xa/chemistry , Membranes, Artificial , Phosphatidylethanolamines/chemistry , Animals , Binding Sites , Cattle , Factor V/metabolism , Factor Xa/metabolism , Phosphatidylethanolamines/metabolism , Thrombin/chemistry , Thrombin/metabolism
7.
Genome Res ; 21(2): 255-64, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21177958

ABSTRACT

Trans-splicing of one of two short leader RNAs, SL1 or SL2, occurs at the 5' ends of pre-mRNAs of many C. elegans genes. We have exploited RNA-sequencing data from the modENCODE project to analyze the transcriptome of C. elegans for patterns of trans-splicing. Transcripts of ∼70% of genes are trans-spliced, similar to earlier estimates based on analysis of far fewer genes. The mRNAs of most trans-spliced genes are spliced to either SL1 or SL2, but most genes are not trans-spliced to both, indicating that SL1 and SL2 trans-splicing use different underlying mechanisms. SL2 trans-splicing occurs in order to separate the products of genes in operons genome wide. Shorter intercistronic distance is associated with greater use of SL2. Finally, increased use of SL1 trans-splicing to downstream operon genes can indicate the presence of an extra promoter in the intercistronic region, creating what has been termed a "hybrid" operon. Within hybrid operons the presence of the two promoters results in the use of the two SL classes: Transcription that originates at the promoter upstream of another gene creates a polycistronic pre-mRNA that receives SL2, whereas transcription that originates at the internal promoter creates transcripts that receive SL1. Overall, our data demonstrate that >17% of all C. elegans genes are in operons.


Subject(s)
Caenorhabditis elegans/genetics , Trans-Splicing/genetics , Animals , DNA, Intergenic/genetics , Gene Deletion , Male , Molecular Sequence Annotation , Operon/genetics , Promoter Regions, Genetic , RNA Precursors/genetics , RNA Precursors/metabolism , RNA Splice Sites/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Spliced Leader/genetics , RNA, Spliced Leader/metabolism
8.
Genes Dev ; 24(15): 1645-58, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20624853

ABSTRACT

Spliced leader (SL) trans-splicing in Caenorhabditis elegans attaches a 22-nucleotide (nt) exon onto the 5' end of many mRNAs. A particular class of SL, SL2, splices mRNAs of downstream operon genes. Here we use an embryonic extract-based in vitro splicing system to show that SL2 specificity information is encoded within the polycistronic pre-mRNA, and that trans-splicing specificity is recapitulated in vitro. We define an RNA sequence required for SL2 trans-splicing, the U-rich (Ur) element, through mutational analysis and bioinformatics as a short stem-loop followed by a sequence motif, UAYYUU, located approximately 50 nt upstream of the trans-splice site. Furthermore, this element is predicted in intercistronic regions of numerous operons of C. elegans and other species that use SL2 trans-splicing. We propose that the UAYYUU motif hybridizes with the 5' splice site on the SL2 RNA to recruit the SL to the pre-mRNA. In this way, the UAYYUU motif in the pre-mRNA would serve an analogous function to the similar sequence in the U1 snRNA, which binds to the 5' splice site of introns, effectively reversing the roles of snRNP and pre-mRNA in trans-splicing.


Subject(s)
Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , RNA Precursors/metabolism , RNA, Spliced Leader/metabolism , Ribonucleoproteins, Small Nuclear/metabolism , Trans-Splicing , Animals , Base Sequence/genetics , Computational Biology , Consensus Sequence/genetics , Inverted Repeat Sequences/genetics , RNA Precursors/chemistry , RNA Precursors/genetics , RNA, Spliced Leader/genetics , Ribonucleoproteins, Small Nuclear/chemistry , Ribonucleoproteins, Small Nuclear/genetics , Uridine/genetics
9.
Proc Natl Acad Sci U S A ; 105(43): 16665-70, 2008 Oct 28.
Article in English | MEDLINE | ID: mdl-18946043

ABSTRACT

RNA polymerase II (Pol II) transcription termination involves two linked processes: mRNA 3'-end formation and release of Pol II from DNA. Signals for 3' processing are recognized by a protein complex that includes cleavage polyadenylation specificity factor (CPSF) and cleavage stimulation factor (CstF). Here we identify suppressors encoding proteins that play roles in processes at the 3' ends of genes by exploiting a mutation in which the 3' end of another gene is transposed into the first gene of the Caenorhabditis elegans lin-15 operon. As expected, genes encoding CPSF and CstF were identified in the screen. We also report three suppressors encoding proteins containing a domain that interacts with the C-terminal domain of Pol II (CID). We show that two of the CID proteins are needed for efficient 3' cleavage and thus may connect transcription termination with RNA cleavage. Furthermore, our results implicate a serine/arginine-rich (SR) protein, SRp20, in events following 3'-end cleavage, leading to termination of transcription.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans/genetics , RNA 3' End Processing , RNA Precursors/genetics , Transcription Factors , Transcription, Genetic , Animals , Cleavage And Polyadenylation Specificity Factor/genetics , Cleavage And Polyadenylation Specificity Factor/metabolism , Cleavage Stimulation Factor/genetics , Cleavage Stimulation Factor/metabolism , Operon , RNA Polymerase II/metabolism , RNA-Binding Proteins , Terminator Regions, Genetic
10.
Blood ; 112(7): 2795-802, 2008 Oct 01.
Article in English | MEDLINE | ID: mdl-18587009

ABSTRACT

Tightly associated factor V(a) (FVa) and factor X(a) (FXa) serve as the essential prothrombin-activating complex that assembles on phosphatidylserine (PS)-containing platelet membranes during blood coagulation. We have previously shown that (1) a soluble form of PS (C6PS) triggers assembly of a fully active FVa-FXa complex in solution and (2) that 2 molecules of C6PS bind to FVa light chain with one occupying a site in the C2 domain. We expressed human factor V(a) (rFVa) with mutations in either the C1 domain (Y1956,L1957)A, the C2 domain (W2063,W2064)A, or both C domains (Y1956,L1957,W2063,W2064)A. Mutations in the C1 and C1-C2 domains of rFVa reduced the rate of activation of prothrombin to thrombin by FXa in the presence of 400 muM C6PS by 14 000- to 15 000-fold relative to either wild-type or C2 mutant factor rFVa. The K(d')s of FXa binding with rFVa (wild-type, C2 mutant, C1 mutant, and C1-C2 mutant) were 3, 4, 564, and 624 nM, respectively. Equilibrium dialysis experiments detected binding of 4, 3, and 2 molecules of C6PS to wild-type rFVa, C1-mutated, and C1,C2-mutated rFVa, respectively. Because FVa heavy chain binds 2 molecules of C6PS, we conclude that both C2 and C1 domains bind one C6PS, with binding to the C1 domain regulating prothrombinase complex assembly.


Subject(s)
Factor V/metabolism , Factor Va/chemistry , Factor Va/metabolism , Factor Xa/metabolism , Phosphatidylserines/metabolism , Amino Acids/metabolism , Animals , Binding Sites , COS Cells , Chlorocebus aethiops , DNA Mutational Analysis , Humans , Models, Biological , Mutant Proteins/metabolism , Protein Structure, Tertiary , Prothrombin/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Solubility , Structure-Activity Relationship
11.
Thromb Res ; 123(2): 352-4, 2008.
Article in English | MEDLINE | ID: mdl-18452976

ABSTRACT

Activated coagulation factor V (FVa) is an important cofactor that accelerates thrombin production. In human blood, 25% of the factor V (FV) is stored in platelets, complexed to the polymeric, FV binding protein multimerin 1 (MMRN1). The light chain of FV is required for MMRN1 binding, and its C2 domain contains a MMRN1 binding site that overlaps phospholipid binding residues essential for FVa procoagulant function. The homologous structures and roles of the FVa light chain C1 and C2 domains led us to investigate if the C1 domain also contains a MMRN1 binding site. The MMRN1 binding properties of FV constructs were tested by modified enzyme-linked immunoassays, before and after thrombin activation. The constructs tested included the combined C1 and C2 domain deleted FV, and B-domain deleted forms of FV containing C1 domain point mutations or combined C1 and C2 domain phospholipid binding site mutations. The MMRN1 binding site in FV/FVa was mapped to a large region that included the C1 domain phospholipid binding residues Y1956 and L1957. The FV construct with combined C1 and C2 domain phospholipid binding site mutations had no MMRN1 binding, highlighting the critical role of the FV C1 and C2 domain phospholipid binding residues in MMRN1 binding. Our data update the information on the structural features of FV and FVa important for MMRN1 binding, and suggest that the extended MMRN1 binding site in the C1 and C2 domains is important for the storage of FV-MMRN1 complexes in platelets.


Subject(s)
Blood Proteins/chemistry , Factor V/chemistry , Animals , Binding Sites/genetics , Blood Proteins/genetics , Blood Proteins/metabolism , COS Cells , Chlorocebus aethiops , Culture Media, Serum-Free , Factor V/genetics , Factor V/metabolism , Humans , Models, Molecular , Phospholipids/chemistry , Phospholipids/genetics , Point Mutation , Protein Binding/genetics , Protein Structure, Tertiary/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Transfection
12.
RNA ; 14(3): 397-403, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18203922

ABSTRACT

The Cech Symposium was held in Boulder, Colorado, on July 12-13, 2007, to celebrate a triple anniversary: 25 years since the first publication reporting RNA self-splicing, 10 years since the identification of reverse transcriptase motifs in the catalytic subunit of telomerase, and 60 years since the birth of Thomas R. Cech. Past and present members of the Cech laboratory presented on their current research, which branched into many categories of study including RNA-mediated catalysis, telomerase and telomeres, new frontiers in nucleic acids, alternative splicing, as well as scientific research with direct medical applications.


Subject(s)
RNA, Catalytic/history , Telomerase/history , Alternative Splicing , History, 20th Century , History, 21st Century , Nucleic Acids/history
13.
Biochemistry ; 44(2): 711-8, 2005 Jan 18.
Article in English | MEDLINE | ID: mdl-15641797

ABSTRACT

Factors V(a) and X(a) (FV(a) and FX(a), respectively) assemble on phosphatidylserine (PS)-containing platelet membranes to form the essential "prothrombinase" complex of blood coagulation. The C-terminal domain (C2) of FV(a) (residues 2037-2196 in human FV(a)) contains a soluble phosphatidylserine (C6PS) binding pocket flanked by a pair of tryptophan residues, Trp(2063) and Trp(2064). Mutating these tryptophans abolishes FV(a) membrane binding. To address both the roles of these tryptophans in C6PS or membrane binding and the role of the C2 domain lipid binding site in regulation of FV(a) cofactor activity, we expressed W(2063,2064)A mutants of the recombinant C2 domain (rFV(a2)-C2) and of a B domain-deleted factor V light isoform (rFV(a2)) in Hi-5 and COS cells, respectively. Intrinsic fluorescence showed that wild-type rFV(a2)-C2 binds to C6PS and to 20% PS/PC membranes with apparent K(d) values of 2.8 microM and 9 nM, respectively, while mutant rFV(a2)-C2 does not. Equilibrium dialysis confirmed that mutant rFV(a2)-C2 does not bind to C6PS. Mutant rFV(a2) binds to C6PS (K(d) approximately 37 microM) with an affinity comparable to that of wild-type rFV(a2) (K(d) approximately 20 microM), although it does not bind to PS/PC membranes to which wild-type rFV(a2) binds with native affinity (K(d) approximately 3 nM). Both wild-type and mutant rFV(a2) bind to active site-labeled FX(a) (DEGR-X(a)) in the presence of 400 microM C6PS with native affinity (K(d) approximately 3-4 nM) to produce a solution rFV(a2)-FX(a) complex of native activity. We conclude that (1) the C2 domain PS site provides all but approximately 1 kT of the free energy of FV(a) membrane binding, (2) tryptophans lining the C2 lipid binding pocket are critical to C6PS and membrane binding and insert into the bilayer interface during membrane binding, (3) occupancy of the C2 lipid binding pocket is not necessary for C6PS-induced formation of the FX(a)-FV(a) complex or its activity, but (4) another PS site on FV(a) does have a regulatory role.


Subject(s)
Factor Va/metabolism , Factor Xa/metabolism , Lipid Bilayers/metabolism , Peptide Fragments/metabolism , Phosphatidylserines/metabolism , Protein Processing, Post-Translational , Alanine/genetics , Amino Acid Substitution/genetics , Binding Sites , Enzyme Activation , Factor Va/chemistry , Factor Va/genetics , Factor Xa/chemistry , Humans , Lipid Bilayers/chemistry , Peptide Fragments/chemistry , Peptide Fragments/genetics , Phosphatidylserines/chemistry , Protein Binding/genetics , Protein Processing, Post-Translational/genetics , Protein Structure, Tertiary/genetics , Prothrombin/chemistry , Prothrombin/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Tryptophan/genetics , Tryptophan/metabolism
14.
Thromb Haemost ; 92(6): 1349-57, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15583744

ABSTRACT

Factor V is an essential cofactor for blood coagulation that circulates in platelets and plasma. Unlike plasma factor V, platelet factor V is stored complexed with the polymeric alpha-granule protein multimerin. In analyses of human platelet factor V on nonreduced denaturing multimer gels, we identified that approximately 25% was variable in size and migrated larger than single chain factor V, the largest form in plasma. Upon reduction, the unusually large, variably-sized forms of platelet factor V liberated components that comigrated with other forms of platelet factor V, indicating that they contained factor V in interchain disulfide-linkages. With thrombin cleavage, factor Va heavy and light chain domains, but not B-domains,were liberated from the components linked by interchain disulfide bonds, indicating that the single cysteine in the B-domain at position 1085 was the site of disulfide linkage. Since unusually large factor V had a variable size and included forms larger than factor V dimers, the data suggested disulfide-linkage with another platelet protein, possibly multimerin. Immunoprecipitation experiments confirmed that unusually large factor V was associated with multimerin and it remained associated in 0.5 M salt. Moreover, platelets contained a subpopulation of multimerin polymers that resisted dissociation from factor V by denaturing detergent and comigrated with unusually large platelet factor V, before and after thrombin cleavage. The disulfide-linked complexes of multimerin and factor V in platelets, which are cleaved by thrombin to liberate factor Va, could be important for modulating the function of platelet factor V and its delivery onto activated platelets. Factor Va generation and function from unusually large platelet factor V is only speculative at this time.


Subject(s)
Blood Platelets/metabolism , Blood Proteins/chemistry , Factor V/biosynthesis , Factor V/chemistry , Blotting, Western , Cell Movement , Dimerization , Disulfides/chemistry , Electrophoresis, Gel, Two-Dimensional , Electrophoresis, Polyacrylamide Gel , Epitope Mapping , Epitopes/chemistry , Factor Va/metabolism , Glycoproteins/chemistry , Humans , Immunoprecipitation , Models, Biological , Polymers/chemistry , Protein Binding , Protein Structure, Tertiary , Secretory Vesicles/chemistry , Thrombin/chemistry , Thrombin/metabolism
15.
J Biol Chem ; 279(49): 51466-71, 2004 Dec 03.
Article in English | MEDLINE | ID: mdl-15452129

ABSTRACT

In platelets, coagulation cofactor V is stored in complex with multimerin 1 in alpha-granules for activation-induced release during clot formation. The molecular nature of multimerin 1 factor V binding has not been determined, although multimerin 1 is known to interact with the factor V light chain. We investigated the region in factor V important for multimerin 1 binding using modified enzyme-linked immunoassays and recombinant factor V constructs. Factor V constructs lacking the C2 region or entire light chain had impaired and absent multimerin 1 binding, respectively, whereas the B domain deleted construct had modestly reduced binding. Analyses of point mutated constructs indicated that the multimerin 1 binding site in the C2 domain of factor V partially overlaps the phosphatidylserine binding site and that the factor V B domain enhances multimerin 1 binding. Multimerin 1 did not inhibit factor V phosphatidylserine binding, and it bound to phosphatidylserine independently of factor V. There was a reduction in factor V in complex with multimerin 1 after activation, and thrombin cleavage significantly reduced factor V binding to multimerin 1. In molar excess, multimerin 1 minimally reduced factor V procoagulant activity in prothrombinase assays and only if it was added before factor V activation. The dissociation of factor V-multimerin 1 complexes following factor V activation suggests a role for multimerin 1 in delivering and localizing factor V onto platelets prior to prothrombinase assembly.


Subject(s)
Blood Proteins/chemistry , Factor V/chemistry , Amino Acid Sequence , Binding Sites , Blood Platelets/metabolism , Coagulants/chemistry , Dose-Response Relationship, Drug , Enzyme-Linked Immunosorbent Assay , Factor V/physiology , Factor Va/chemistry , Humans , Models, Biological , Models, Molecular , Molecular Sequence Data , Mutation , Phosphatidylserines/chemistry , Phospholipids/chemistry , Point Mutation , Protein Binding , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Sequence Homology, Amino Acid , Thrombin/chemistry , Thromboplastin/metabolism , Time Factors
16.
Biochemistry ; 43(14): 4385-93, 2004 Apr 13.
Article in English | MEDLINE | ID: mdl-15065883

ABSTRACT

Interactions between factor Va and membrane phosphatidylserine (PS) regulate activity of the prothrombinase complex. Two solvent-exposed hydrophobic residues located in the C2 domain, Trp(2063) and Trp(2064), have been proposed to contribute to factor Va membrane interactions by insertion into the hydrophobic membrane bilayer. However, the prothrombinase activity of rHFVa W(2063, 2064)A was found to be significantly impaired only at low concentrations of PS (5 mol %). In this study, we find that 10-fold higher concentrations of mutant factor Va are required for half-maximal prothrombinase activity on membranes containing 25% PS. The ability of the mutant factor Va to interact with factor Xa on a membrane was also impaired since 4-fold higher concentrations of factor Xa were required for half-maximal prothrombinase activity. The interaction of factor Va with 25% PS membranes was also characterized using fluorescence energy transfer and surface plasmon resonance. We found that the affinity of mutant factor Va for membranes containing 25% PS was reduced at least 400-fold with a K(d) > 10(-7) M. The binding of mutant factor Va to 25% PS membranes was markedly enhanced in the presence of factor Xa, indicating stabilization of the factor Va-factor Xa-membrane complex. Our findings indicate that Trp(2063) and Trp(2064) play a critical role in the high-affinity binding of factor Va to PS membranes. It remains to be determined whether occupancy of this PS binding site in factor Va is also required for high-affinity binding to factor Xa.


Subject(s)
Factor Va/chemistry , Lipid Bilayers/chemistry , Phospholipids/chemistry , Protein Processing, Post-Translational , Thromboplastin/metabolism , Tryptophan/chemistry , Alanine/genetics , Amino Acid Substitution/genetics , Animals , COS Cells , Cattle , Cell Line , Factor Va/genetics , Factor Va/isolation & purification , Factor Va/metabolism , Fluorescence Resonance Energy Transfer , Humans , Moths , Phosphatidylserines/chemistry , Protein Binding , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Surface Plasmon Resonance , Tryptophan/genetics
17.
Thromb Haemost ; 91(1): 16-27, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14691564

ABSTRACT

The contribution of the factor Va C1 domain (fVa-C1) to assembly of the prothrombinase complex has not been previously investigated. The homologous fVa-C2 domain contains a binding site for phosphatidylserine (PS) that includes the indole moieties of Trp(2063)/Trp(2064) at the apex of spike-1. In order to investigate the structure and function of fVa-C1 a molecular model was constructed based on the structure of fVa-C2. The aromatic and hydrophobic side chains of Tyr (1956) /Leu (1957) in fVa-C1 are located at the predicted apex of spike-3. Exposed charged and hydrophobic residues in fVa-C1 were changed to alanine in clusters of 1-3 mutations per construct. The resultant 20 mutants were expressed in COS cells and screened for binding to immobilized PS and prothrombinase activity on phospholipid vesicles containing either 25% or 5% PS. Two mutants, (Y1956,L1957)A, and (R2023,R2027)A showed both decreased binding to immobilized PS and a selective decrease in prothrombinase activity on membranes containing 5% PS. The interaction of purified (Y1956,L1957)A with phospholipid vesicles was studied using fluorescence resonance energy transfer and prothrombinase assays. The affinity of (Y1956,L1957)A binding to 25% PS membranes was reduced 12-fold compared to rHFVa. Prothrombin activation in the presence of (Y1956,L1957)A was markedly impaired on phos-pholipid vesicles containing 10% or less PS. We conclude that solvent exposed hydrophobic and aromatic amino acids in both fVa-C1 and fVa-C2 contribute to the interaction of factor V with PS membranes.


Subject(s)
Cell Membrane/metabolism , Factor V/chemistry , Alanine/chemistry , Amino Acid Sequence , Animals , COS Cells , Culture Media, Conditioned/pharmacology , DNA, Complementary/metabolism , Dose-Response Relationship, Drug , Enzyme-Linked Immunosorbent Assay , Fluorescence Resonance Energy Transfer , Humans , Kinetics , Mice , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , Phosphatidylserines/chemistry , Phospholipids/chemistry , Protein Binding , Protein Structure, Tertiary , Thromboplastin/chemistry , Thromboplastin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...