Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Stroke ; 44(12): 3587-90, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24149004

ABSTRACT

BACKGROUND AND PURPOSE: This study investigated whether isoflurane ameliorates neurological sequelae after germinal matrix hemorrhage (GMH) through activation of the cytoprotective sphingosine kinase/sphingosine-1-phosphate receptor/Akt pathway. METHODS: GMH was induced in P7 rat pups by intraparenchymal infusion of bacterial collagenase (0.3 U) into the right hemispheric germinal matrix. GMH animals received 2% isoflurane either once 1 hour after surgery or every 12 hours for 3 days. Isoflurane treatment was then combined with sphingosine-1-phosphate receptor-1/2 antagonist VPC23019 or sphingosine kinase 1/2 antagonist N,N-dimethylsphingosine. RESULTS: Brain protein expression of sphingosine kinase-1 and phosphorylated Akt were significantly increased after isoflurane post-treatment, and cleaved caspase-3 was decreased at 24 hours after surgery, which was reversed by the antagonists. Isoflurane significantly reduced posthemorrhagic ventricular dilation and improved motor, but not cognitive, functions in GMH animals 3 weeks after surgery; no improvements were observed after VPC23019 administration. CONCLUSIONS: Isoflurane post-treatment improved the neurological sequelae after GMH possibly by activation of the sphingosine kinase/Akt pathway.


Subject(s)
Brain/drug effects , Intracranial Hemorrhages/drug therapy , Isoflurane/therapeutic use , Neuroprotective Agents/therapeutic use , Animals , Animals, Newborn , Brain/metabolism , Disease Models, Animal , Intracranial Hemorrhages/chemically induced , Intracranial Hemorrhages/metabolism , Isoflurane/pharmacology , Neuroprotective Agents/pharmacology , Phosphorylation/drug effects , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Receptors, Lysosphingolipid/metabolism , Recovery of Function/drug effects , Signal Transduction/drug effects , Sphingosine/analogs & derivatives , Sphingosine/pharmacology , Sphingosine/therapeutic use
2.
Med Gas Res ; 2(1): 22, 2012 Aug 28.
Article in English | MEDLINE | ID: mdl-22929111

ABSTRACT

This review evaluates the mechanism of volatile anesthetics as cardioprotective agents in both clinical and laboratory research and furthermore assesses possible cardiac side effects upon usage. Cardiac as well as non-cardiac surgery may evoke perioperative adverse events including: ischemia, diverse arrhythmias and reperfusion injury. As volatile anesthetics have cardiovascular effects that can lead to hypotension, clinicians may choose to administer alternative anesthetics to patients with coronary artery disease, particularly if the patient has severe preoperative ischemia or cardiovascular instability. Increasing preclinical evidence demonstrated that administration of inhaled anesthetics - before and during surgery - reduces the degree of ischemia and reperfusion injury to the heart. Recently, this preclinical data has been implemented clinically, and beneficial effects have been found in some studies of patients undergoing coronary artery bypass graft surgery. Administration of volatile anesthetic gases was protective for patients undergoing cardiac surgery through manipulation of the potassium ATP (KATP) channel, mitochondrial permeability transition pore (mPTP), reactive oxygen species (ROS) production, as well as through cytoprotective Akt and extracellular-signal kinases (ERK) pathways. However, as not all studies have demonstrated improved outcomes, the risks for undesirable hemodynamic effects must be weighed against the possible benefits of using volatile anesthetics as a means to provide cardiac protection in patients with coronary artery disease who are undergoing surgery.

3.
Nature ; 440(7087): 1045-9, 2006 Apr 20.
Article in English | MEDLINE | ID: mdl-16625196

ABSTRACT

Chromosome 17 is unusual among the human chromosomes in many respects. It is the largest human autosome with orthology to only a single mouse chromosome, mapping entirely to the distal half of mouse chromosome 11. Chromosome 17 is rich in protein-coding genes, having the second highest gene density in the genome. It is also enriched in segmental duplications, ranking third in density among the autosomes. Here we report a finished sequence for human chromosome 17, as well as a structural comparison with the finished sequence for mouse chromosome 11, the first finished mouse chromosome. Comparison of the orthologous regions reveals striking differences. In contrast to the typical pattern seen in mammalian evolution, the human sequence has undergone extensive intrachromosomal rearrangement, whereas the mouse sequence has been remarkably stable. Moreover, although the human sequence has a high density of segmental duplication, the mouse sequence has a very low density. Notably, these segmental duplications correspond closely to the sites of structural rearrangement, demonstrating a link between duplication and rearrangement. Examination of the main classes of duplicated segments provides insight into the dynamics underlying expansion of chromosome-specific, low-copy repeats in the human genome.


Subject(s)
Chromosomes, Human, Pair 17/genetics , Evolution, Molecular , Animals , Base Composition , Gene Duplication , Humans , Long Interspersed Nucleotide Elements/genetics , Mice , Sequence Analysis, DNA , Short Interspersed Nucleotide Elements/genetics , Synteny/genetics
4.
Nature ; 439(7074): 331-5, 2006 Jan 19.
Article in English | MEDLINE | ID: mdl-16421571

ABSTRACT

The International Human Genome Sequencing Consortium (IHGSC) recently completed a sequence of the human genome. As part of this project, we have focused on chromosome 8. Although some chromosomes exhibit extreme characteristics in terms of length, gene content, repeat content and fraction segmentally duplicated, chromosome 8 is distinctly typical in character, being very close to the genome median in each of these aspects. This work describes a finished sequence and gene catalogue for the chromosome, which represents just over 5% of the euchromatic human genome. A unique feature of the chromosome is a vast region of approximately 15 megabases on distal 8p that appears to have a strikingly high mutation rate, which has accelerated in the hominids relative to other sequenced mammals. This fast-evolving region contains a number of genes related to innate immunity and the nervous system, including loci that appear to be under positive selection--these include the major defensin (DEF) gene cluster and MCPH1, a gene that may have contributed to the evolution of expanded brain size in the great apes. The data from chromosome 8 should allow a better understanding of both normal and disease biology and genome evolution.


Subject(s)
Chromosomes, Human, Pair 8/genetics , Evolution, Molecular , Animals , Contig Mapping , DNA, Satellite/genetics , Defensins/genetics , Euchromatin/genetics , Female , Humans , Immunity, Innate/genetics , Male , Molecular Sequence Data , Multigene Family/genetics , Sequence Analysis, DNA
5.
Nature ; 437(7058): 551-5, 2005 Sep 22.
Article in English | MEDLINE | ID: mdl-16177791

ABSTRACT

Chromosome 18 appears to have the lowest gene density of any human chromosome and is one of only three chromosomes for which trisomic individuals survive to term. There are also a number of genetic disorders stemming from chromosome 18 trisomy and aneuploidy. Here we report the finished sequence and gene annotation of human chromosome 18, which will allow a better understanding of the normal and disease biology of this chromosome. Despite the low density of protein-coding genes on chromosome 18, we find that the proportion of non-protein-coding sequences evolutionarily conserved among mammals is close to the genome-wide average. Extending this analysis to the entire human genome, we find that the density of conserved non-protein-coding sequences is largely uncorrelated with gene density. This has important implications for the nature and roles of non-protein-coding sequence elements.


Subject(s)
Chromosomes, Human, Pair 18/genetics , DNA/genetics , Aneuploidy , Animals , Conserved Sequence/genetics , CpG Islands/genetics , Exons/genetics , Expressed Sequence Tags , Genes/genetics , Genome, Human , Humans , Introns/genetics , Molecular Sequence Data , Sequence Analysis, DNA , Synteny
SELECTION OF CITATIONS
SEARCH DETAIL
...