Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters










Publication year range
1.
Nat Chem Biol ; 20(1): 52-61, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37653172

ABSTRACT

Quaternary ammonium blockers were previously shown to bind in the pore to block both open and closed conformations of large-conductance calcium-activated potassium (BK and MthK) channels. Because blocker entry was assumed through the intracellular entryway (bundle crossing), closed-pore access suggested that the gate was not at the bundle crossing. Structures of closed MthK, a Methanobacterium thermoautotrophicum homolog of BK channels, revealed a tightly constricted intracellular gate, leading us to investigate the membrane-facing fenestrations as alternative pathways for blocker access directly from the membrane. Atomistic free energy simulations showed that intracellular blockers indeed access the pore through the fenestrations, and a mutant channel with narrower fenestrations displayed no closed-state TPeA block at concentrations that blocked the wild-type channel. Apo BK channels display similar fenestrations, suggesting that blockers may use them as access paths into closed channels. Thus, membrane fenestrations represent a non-canonical pathway for selective targeting of specific channel conformations, opening novel ways to selectively drug BK channels.


Subject(s)
Calcium , Large-Conductance Calcium-Activated Potassium Channels , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Calcium/metabolism , Calcium Channels/metabolism , Potassium/metabolism , Molecular Conformation
2.
Biophys Rev ; 14(1): 1-2, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35222732

ABSTRACT

On behalf of the Australian Society for Biophysics (ASB) and the Editors of this Special Issue, I would like to express our appreciation to Editor-in-Chief, Damien Hall, for arranging the publication of this Special Issue. The ASB is about five times smaller than our sister the Biophysical Society for Japan (BSJ) and tenfold smaller than the US Biophysical Society (USBS), but our meetings are notable because of the encouragement the Society gives to emerging biophysicists. It can be a terrifying experience for a PhD student to have to face a roomful of professors and senior academics, but invariably they appreciate the experience. Another feature of the ASB meetings is the inclusion of contributions from the Asian Pacific region. We now have formal ties with our New Zealand colleagues and our meetings with the BSJ contain joint sessions (see below). In 2020, despite the impact of COVID-19 (see Adam Hill's Commentary), there is a joint session with the University of California Davis. This Special Issue comprises 2 Editorials, 3 Commentaries, and 25 reviews.

3.
Biophys Rev ; 13(4): 485-486, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34188719

ABSTRACT

This Commentary describes a call for submissions for the upcoming Special Issue focused on the research topics presented at the Australian Society of Biophysics (ASB) in 2020 and 2021. Submissions from past and present ASB members who could not attend these meetings are also welcome as contributions to this special issue.

4.
J Chem Theory Comput ; 17(3): 1726-1741, 2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33539082

ABSTRACT

Despite the progress in modeling complex molecular systems of ever-increasing complexity, a quantitatively accurate computational treatment of ion permeation through narrow membrane channels remains challenging. An important factor to reach this goal is induced electronic polarization, which is likely to impact the permeation rate of small ions through narrow molecular pores. In this work, we extended the recently developed polarizable force field based on the classical Drude oscillators to assess the role of induced polarization effects on the energetics of sodium and potassium ion transport across the gramicidin A (gA) ion channel. The inclusion of induced polarization lowers barriers present in 1D potential of mean force (PMF) for cation permeation by ∼50% compared to those obtained with the additive force field. Conductance properties calculated with 1D PMFs from Drude simulations are in better agreement with experimental results. Polarization of single-file water molecules and protein atoms forming the narrow pore has a direct impact on the free-energy barriers and cation-specific solid-state NMR chemical shifts. Sensitivity analysis indicates that small changes to water-channel interactions can alter the free energy barrier for ion permeation. These results, illustrating polarization effects present in the complex electrostatic environment of the gA channel, have broad implications for revising proposed mechanisms of ion permeation and selectivity in a variety of ion channels.

5.
J Phys Chem B ; 125(4): 1020-1035, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33493394

ABSTRACT

Different mechanisms have been proposed to explain the permeation of charged compounds through lipid membranes. Overall, it is expected that an ion-induced defect permeation mechanism, where substantial membrane deformations accompany ion movement, should be dominant in thin membranes but that a solubility-diffusion mechanism, where ions partition into the membrane core with large associated dehydration energy costs, becomes dominant in thicker membranes. However, while this physical picture is intuitively reasonable, capturing the interconversion between these two permeation mechanisms in molecular dynamics (MD) simulations based on atomic models is challenging. In particular, simulations relying on nonpolarizable force fields are artificially unfavorable to the solubility-diffusion mechanism, as induced polarization of the nonpolar hydrocarbon is ignored, causing overestimated free energy costs for charged molecules to enter into this region of the membrane. In this study, all-atom MD simulations based on nonpolarizable and polarizable force fields are used to quantitatively characterize the permeation process for the arginine side chain analog methyl-guanidinium through bilayer membranes of mono-unsaturated phosphatidylcholine lipids with and without cholesterol, resulting in thicknesses spanning from ∼24 to ∼42 Å. With simulations based on a nonpolarizable force field, ion translocation can take place solely through an ion-induced defect mechanism, with free energy barriers increasing linearly from 14 to 40 kcal/mol, depending on the thickness. However, with simulations based on a polarizable force field, ion translocation is predominantly dominated by an ion-induced defect mechanism in thin membranes, which progressively converts to a solubility-diffusion mechanism as the membranes get thicker. The transition between the two mechanisms occurs at a thickness of ∼29 Å, with lipid tails of 22 or more carbon atoms. This situation appears to represent the upper limit for ion-induced defect permeation within the current polarizable models. Beyond this thickness, it becomes energetically preferable for the ion to dehydrate and partition into the membrane core-a phenomenon that cannot be captured using the nonpolarizable models. Induced electronic polarizability therefore leads not just to a shift in permeation energetics but to an interconversion between two strikingly different physical mechanisms. The result highlights the importance of induced polarizability in modeling lipid membranes.


Subject(s)
Lipid Bilayers , Molecular Dynamics Simulation , Diffusion , Entropy , Guanidine , Ions , Thermodynamics
6.
Proc Natl Acad Sci U S A ; 117(47): 29968-29978, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33154158

ABSTRACT

Potassium channels can become nonconducting via inactivation at a gate inside the highly conserved selectivity filter (SF) region near the extracellular side of the membrane. In certain ligand-gated channels, such as BK channels and MthK, a Ca2+-activated K+ channel from Methanobacterium thermoautotrophicum, the SF has been proposed to play a role in opening and closing rather than inactivation, although the underlying conformational changes are unknown. Using X-ray crystallography, identical conductive MthK structures were obtained in wide-ranging K+ concentrations (6 to 150 mM), unlike KcsA, whose SF collapses at low permeant ion concentrations. Surprisingly, three of the SF's four binding sites remained almost fully occupied throughout this range, indicating high affinities (likely submillimolar), while only the central S2 site titrated, losing its ion at 6 mM, indicating low K+ affinity (∼50 mM). Molecular simulations showed that the MthK SF can also collapse in the absence of K+, similar to KcsA, but that even a single K+ binding at any of the SF sites, except S4, can rescue the conductive state. The uneven titration across binding sites differs from KcsA, where SF sites display a uniform decrease in occupancy with K+ concentration, in the low millimolar range, leading to SF collapse. We found that ions were disfavored in MthK's S2 site due to weaker coordination by carbonyl groups, arising from different interactions with the pore helix and water behind the SF. We conclude that these differences in interactions endow the seemingly identical SFs of KcsA and MthK with strikingly different inactivating phenotypes.


Subject(s)
Bacterial Proteins/metabolism , Ion Channel Gating/physiology , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Protein Domains/physiology , Bacterial Proteins/isolation & purification , Bacterial Proteins/ultrastructure , Binding Sites , Crystallography, X-Ray , Large-Conductance Calcium-Activated Potassium Channels/isolation & purification , Large-Conductance Calcium-Activated Potassium Channels/ultrastructure , Methanobacterium , Molecular Dynamics Simulation , Potassium/metabolism
8.
Nature ; 580(7802): 288-293, 2020 04.
Article in English | MEDLINE | ID: mdl-32269335

ABSTRACT

Inactivation is the process by which ion channels terminate ion flux through their pores while the opening stimulus is still present1. In neurons, inactivation of both sodium and potassium channels is crucial for the generation of action potentials and regulation of firing frequency1,2. A cytoplasmic domain of either the channel or an accessory subunit is thought to plug the open pore to inactivate the channel via a 'ball-and-chain' mechanism3-7. Here we use cryo-electron microscopy to identify the molecular gating mechanism in calcium-activated potassium channels by obtaining structures of the MthK channel from Methanobacterium thermoautotrophicum-a purely calcium-gated and inactivating channel-in a lipid environment. In the absence of Ca2+, we obtained a single structure in a closed state, which was shown by atomistic simulations to be highly flexible in lipid bilayers at ambient temperature, with large rocking motions of the gating ring and bending of pore-lining helices. In Ca2+-bound conditions, we obtained several structures, including multiple open-inactivated conformations, further indication of a highly dynamic protein. These different channel conformations are distinguished by rocking of the gating rings with respect to the transmembrane region, indicating symmetry breakage across the channel. Furthermore, in all conformations displaying open channel pores, the N terminus of one subunit of the channel tetramer sticks into the pore and plugs it, with free energy simulations showing that this is a strong interaction. Deletion of this N terminus leads to functionally non-inactivating channels and structures of open states without a pore plug, indicating that this previously unresolved N-terminal peptide is responsible for a ball-and-chain inactivation mechanism.


Subject(s)
Cryoelectron Microscopy , Ion Channel Gating , Methanobacterium/chemistry , Potassium Channels, Calcium-Activated/antagonists & inhibitors , Potassium Channels, Calcium-Activated/ultrastructure , Calcium/metabolism , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Models, Molecular , Potassium Channels, Calcium-Activated/chemistry , Potassium Channels, Calcium-Activated/metabolism , Protein Structure, Secondary , Protein Subunits/chemistry , Protein Subunits/metabolism , Thermodynamics
9.
J Gen Physiol ; 152(2)2020 02 03.
Article in English | MEDLINE | ID: mdl-31952079

ABSTRACT

Trimeric acid-sensing ion channels (ASICs) contribute to neuronal signaling by converting extracellular acidification into excitatory sodium currents. Previous work with homomeric ASIC1a implicates conserved leucine (L7') and consecutive glycine-alanine-serine (GAS belt) residues near the middle, and conserved negatively charged (E18') residues at the bottom of the pore in ion permeation and/or selectivity. However, a conserved mechanism of ion selectivity throughout the ASIC family has not been established. We therefore explored the molecular determinants of ion selectivity in heteromeric ASIC1a/ASIC2a and homomeric ASIC2a channels using site-directed mutagenesis, electrophysiology, and molecular dynamics free energy simulations. Similar to ASIC1a, E18' residues create an energetic preference for sodium ions at the lower end of the pore in ASIC2a-containing channels. However, and in contrast to ASIC1a homomers, ion permeation through ASIC2a-containing channels is not determined by L7' side chains in the upper part of the channel. This may be, in part, due to ASIC2a-specific negatively charged residues (E59 and E62) that lower the energy of ions in the upper pore, thus making the GAS belt more important for selectivity. This is confirmed by experiments showing that the L7'A mutation has no effect in ASIC2a, in contrast to ASIC1a, where it eliminated selectivity. ASIC2a triple mutants eliminating both L7' and upper charges did not lead to large changes in selectivity, suggesting a different role for L7' in ASIC2a compared with ASIC1a channels. In contrast, we observed measurable changes in ion selectivity in ASIC2a-containing channels with GAS belt mutations. Our results suggest that ion conduction and selectivity in the upper part of the ASIC pore may differ between subtypes, whereas the essential role of E18' in ion selectivity is conserved. Furthermore, we demonstrate that heteromeric channels containing mutations in only one of two ASIC subtypes provide a means of functionally testing mutations that render homomeric channels nonfunctional.


Subject(s)
Acid Sensing Ion Channels/metabolism , Ions/metabolism , Acid Sensing Ion Channels/genetics , Animals , Hydrogen-Ion Concentration , Mice , Mutation/genetics , Neurons/metabolism , Patch-Clamp Techniques/methods , Sodium/metabolism
10.
J Comput Chem ; 41(5): 387-401, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31743478

ABSTRACT

Atomic-level studies of protein activity represent a significant challenge as a result of the complexity of conformational changes occurring on wide-ranging timescales, often greatly exceeding that of even the longest simulations. A prime example is the elucidation of protein allosteric mechanisms, where localized perturbations transmit throughout a large macromolecule to generate a response signal. For example, the conversion of chemical to electrical signals during synaptic neurotransmission in the brain is achieved by specialized membrane proteins called pentameric ligand-gated ion channels. Here, the binding of a neurotransmitter results in a global conformational change to open an ion-conducting pore across the nerve cell membrane. X-ray crystallography has produced static structures of the open and closed states of the proton-gated GLIC pentameric ligand-gated ion channel protein, allowing for atomistic simulations that can uncover changes related to activation. We discuss a range of enhanced sampling approaches that could be used to explore activation mechanisms. In particular, we describe recent application of an atomistic string method, based on Roux's "swarms of trajectories" approach, to elucidate the sequence and interdependence of conformational changes during activation. We illustrate how this can be combined with transition analysis and Brownian dynamics to extract thermodynamic and kinetic information, leading to understanding of what controls ion channel function. © 2019 Wiley Periodicals, Inc.


Subject(s)
Ligand-Gated Ion Channels/chemistry , Cell Membrane/chemistry , Cell Membrane/metabolism , Crystallography, X-Ray , Kinetics , Ligand-Gated Ion Channels/metabolism , Molecular Dynamics Simulation , Thermodynamics
11.
Chem Rev ; 119(13): 7737-7832, 2019 07 10.
Article in English | MEDLINE | ID: mdl-31246417

ABSTRACT

Membrane ion channels are the fundamental electrical components in the nervous system. Recent developments in X-ray crystallography and cryo-EM microscopy have revealed what these proteins look like in atomic detail but do not tell us how they function. Molecular dynamics simulations have progressed to the point that we can now simulate realistic molecular assemblies to produce quantitative calculations of the thermodynamic and kinetic quantities that control function. In this review, we summarize the state of atomistic simulation methods for ion channels to understand their conduction, activation, and drug modulation mechanisms. We are at a crossroads in atomistic simulation, where long time scale observation can provide unbiased exploration of mechanisms, supplemented by biased free energy methodologies. We illustrate the use of these approaches to describe ion conduction and selectivity in voltage-gated sodium and acid-sensing ion channels. Studies of channel gating present a significant challenge, as activation occurs on longer time scales. Enhanced sampling approaches can ensure convergence on minimum free energy pathways for activation, as illustrated here for pentameric ligand-gated ion channels that are principal to nervous system function and the actions of general anesthetics. We also examine recent studies of local anesthetic and antiepileptic drug binding to a sodium channel, revealing sites and pathways that may offer new targets for drug development. Modern simulations thus offer a range of molecular-level insights into ion channel function and modulation as a learning platform for mechanistic discovery and drug development.


Subject(s)
Ion Channel Gating , Ion Channels/chemistry , Cell Membrane/chemistry , Cell Membrane/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Ion Channels/metabolism , Models, Chemical , Models, Molecular , Molecular Dynamics Simulation , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/metabolism , Protein Conformation , Thermodynamics
12.
J Biol Chem ; 294(15): 5956-5969, 2019 04 12.
Article in English | MEDLINE | ID: mdl-30770471

ABSTRACT

Cholesterol's effects on Na+,K+-ATPase reconstituted in phospholipid vesicles have been extensively studied. However, previous studies have reported both cholesterol-mediated stimulation and inhibition of Na+,K+-ATPase activity. Here, using partial reaction kinetics determined via stopped-flow experiments, we studied cholesterol's effect on Na+,K+-ATPase in a near-native environment in which purified membrane fragments were depleted of cholesterol with methyl-ß-cyclodextrin (mßCD). The mßCD-treated Na+,K+-ATPase had significantly reduced overall activity and exhibited decreased observed rate constants for ATP phosphorylation (ENa3+ → E2P, i.e. phosphorylation by ATP and Na+ occlusion from the cytoplasm) and K+ deocclusion with subsequent intracellular Na+ binding (E2K2+ → E1Na3+). However, cholesterol depletion did not affect the observed rate constant for K+ occlusion by phosphorylated Na+,K+-ATPase on the extracellular face and subsequent dephosphorylation (E2P → E2K2+). Thus, partial reactions involving cation binding and release at the protein's intracellular side were most dependent on cholesterol. Fluorescence measurements with the probe eosin indicated that cholesterol depletion stabilizes the unphosphorylated E2 state relative to E1, and the cholesterol depletion-induced slowing of ATP phosphorylation kinetics was consistent with partial conversion of Na+,K+-ATPase into the E2 state, requiring a slow E2 → E1 transition before the phosphorylation. Molecular dynamics simulations of Na+,K+-ATPase in membranes with 40 mol % cholesterol revealed cholesterol interaction sites that differ markedly among protein conformations. They further indicated state-dependent effects on membrane shape, with the E2 state being likely disfavored in cholesterol-rich bilayers relative to the E1P state because of a greater hydrophobic mismatch. In summary, cholesterol extraction from membranes significantly decreases Na+,K+-ATPase steady-state activity.


Subject(s)
Cell Membrane/enzymology , Cholesterol , Molecular Dynamics Simulation , Sodium-Potassium-Exchanging ATPase , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Animals , Cholesterol/chemistry , Cholesterol/metabolism , Enzyme Stability , Sodium-Potassium-Exchanging ATPase/chemistry , Sodium-Potassium-Exchanging ATPase/metabolism , Swine , beta-Cyclodextrins/chemistry
13.
Neurosci Lett ; 700: 3-8, 2019 05 01.
Article in English | MEDLINE | ID: mdl-29807068

ABSTRACT

Voltage-gated sodium channels are the molecular components of electrical signaling in the body, yet the molecular origins of Na+-selective transport remain obscured by diverse protein chemistries within this family of ion channels. In particular, bacterial and mammalian sodium channels are known to exhibit similar relative ion permeabilities for Na+ over K+ ions, despite their distinct signature EEEE and DEKA sequences. Atomic-level molecular dynamics simulations using high-resolution bacterial channel structures and mammalian channel models have begun to describe how these sequences lead to analogous high field strength ion binding sites that drive Na+ conduction. Similar complexes have also been identified in unrelated acid sensing ion channels involving glutamate and aspartate side chains that control their selectivity. These studies suggest the possibility of a common origin for Na+ selective binding and transport.


Subject(s)
Voltage-Gated Sodium Channels/physiology , Acid Sensing Ion Channels/chemistry , Acid Sensing Ion Channels/physiology , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/physiology , Humans , Ion Channel Gating , Permeability , Protein Conformation , Voltage-Gated Sodium Channels/chemistry
14.
PLoS Comput Biol ; 14(9): e1006398, 2018 09.
Article in English | MEDLINE | ID: mdl-30208027

ABSTRACT

Bacterial and human voltage-gated sodium channels (Navs) exhibit similar cation selectivity, despite their distinct EEEE and DEKA selectivity filter signature sequences. Recent high-resolution structures for bacterial Navs have allowed us to learn about ion conduction mechanisms in these simpler homo-tetrameric channels, but our understanding of the function of their mammalian counterparts remains limited. To probe these conduction mechanisms, a model of the human Nav1.2 channel has been constructed by grafting residues of its selectivity filter and external vestibular region onto the bacterial NavRh channel with atomic-resolution structure. Multi-µs fully atomistic simulations capture long time-scale ion and protein movements associated with the permeation of Na+ and K+ ions, and their differences. We observe a Na+ ion knock-on conduction mechanism facilitated by low energy multi-carboxylate/multi-Na+ complexes, akin to the bacterial channels. These complexes involve both the DEKA and vestibular EEDD rings, acting to draw multiple Na+ into the selectivity filter and promote permeation. When the DEKA ring lysine is protonated, we observe that its ammonium group is actively participating in Na+ permeation, presuming the role of another ion. It participates in the formation of a stable complex involving carboxylates that collectively bind both Na+ and the Lys ammonium group in a high-field strength site, permitting pass-by translocation of Na+. In contrast, multiple K+ ion complexes with the DEKA and EEDD rings are disfavored by up to 8.3 kcal/mol, with the K+-lysine-carboxylate complex non-existent. As a result, lysine acts as an electrostatic plug that partially blocks the flow of K+ ions, which must instead wait for isomerization of lysine downward to clear the path for K+ passage. These distinct mechanisms give us insight into the nature of ion conduction and selectivity in human Nav channels, while uncovering high field strength carboxylate binding complexes that define the more general phenomenon of Na+-selective ion transport in nature.


Subject(s)
Carboxylic Acids/chemistry , Ions , Lysine/chemistry , NAV1.2 Voltage-Gated Sodium Channel/chemistry , Amines/chemistry , Bacterial Proteins/chemistry , Humans , Membrane Potentials , Mutation , NAV1.2 Voltage-Gated Sodium Channel/genetics , Potassium/chemistry , Protein Binding , Protein Domains , Protein Transport , Sodium/chemistry , Static Electricity , Thermodynamics
15.
Trends Pharmacol Sci ; 38(10): 899-907, 2017 10.
Article in English | MEDLINE | ID: mdl-28711156

ABSTRACT

The human ether-a-go-go-related gene (hERG) K+ channel is of great medical and pharmaceutical relevance. Inherited mutations in hERG result in congenital long-QT syndrome which is associated with a markedly increased risk of cardiac arrhythmia and sudden death. hERG K+ channels are also remarkably susceptible to block by a wide range of drugs, which in turn can cause drug-induced long-QT syndrome and an increased risk of sudden death. The recent determination of the near-atomic resolution structure of the hERG K+ channel, using single-particle cryo-electron microscopy (cryo-EM), provides tremendous insights into how these channels work. It also suggests a way forward in our quest to understand why these channels are so promiscuous with respect to drug binding.


Subject(s)
ERG1 Potassium Channel/chemistry , ERG1 Potassium Channel/metabolism , Arrhythmias, Cardiac/metabolism , ERG1 Potassium Channel/antagonists & inhibitors , Humans , Models, Molecular , Potassium Channel Blockers/metabolism , Potassium Channel Blockers/pharmacology , Protein Binding , Quantitative Structure-Activity Relationship
16.
Proc Natl Acad Sci U S A ; 114(21): E4158-E4167, 2017 05 23.
Article in English | MEDLINE | ID: mdl-28487483

ABSTRACT

Pentameric ligand-gated ion channels control synaptic neurotransmission by converting chemical signals into electrical signals. Agonist binding leads to rapid signal transduction via an allosteric mechanism, where global protein conformational changes open a pore across the nerve cell membrane. We use all-atom molecular dynamics with a swarm-based string method to solve for the minimum free-energy gating pathways of the proton-activated bacterial GLIC channel. We describe stable wetted/open and dewetted/closed states, and uncover conformational changes in the agonist-binding extracellular domain, ion-conducting transmembrane domain, and gating interface that control communication between these domains. Transition analysis is used to compute free-energy surfaces that suggest allosteric pathways; stabilization with pH; and intermediates, including states that facilitate channel closing in the presence of an agonist. We describe a switching mechanism that senses proton binding by marked reorganization of subunit interface, altering the packing of ß-sheets to induce changes that lead to asynchronous pore-lining M2 helix movements. These results provide molecular details of GLIC gating and insight into the allosteric mechanisms for the superfamily of pentameric ligand-gated channels.


Subject(s)
Ligand-Gated Ion Channels/metabolism , Models, Biological , Models, Chemical , Computer Simulation
17.
Elife ; 62017 05 12.
Article in English | MEDLINE | ID: mdl-28498103

ABSTRACT

Increased extracellular proton concentrations during neurotransmission are converted to excitatory sodium influx by acid-sensing ion channels (ASICs). 10-fold sodium/potassium selectivity in ASICs has long been attributed to a central constriction in the channel pore, but experimental verification is lacking due to the sensitivity of this structure to conventional manipulations. Here, we explored the basis for ion selectivity by incorporating unnatural amino acids into the channel, engineering channel stoichiometry and performing free energy simulations. We observed no preference for sodium at the "GAS belt" in the central constriction. Instead, we identified a band of glutamate and aspartate side chains at the lower end of the pore that enables preferential sodium conduction.


Subject(s)
Acid Sensing Ion Channels/chemistry , Acid Sensing Ion Channels/metabolism , Potassium/metabolism , Sodium/metabolism , Acid Sensing Ion Channels/genetics , Amino Acid Substitution , DNA Mutational Analysis , Models, Molecular , Substrate Specificity
18.
Biochim Biophys Acta Biomembr ; 1859(5): 813-823, 2017 May.
Article in English | MEDLINE | ID: mdl-28115116

ABSTRACT

RH421 is a voltage-sensitive fluorescent styrylpyridinium dye which has often been used to probe the kinetics of Na+,K+-ATPase partial reactions. The origin of the dye's response has up to now been unclear. Here we show that RH421 responds to phosphorylation of the Na+,K+-ATPase by inorganic phosphate with a fluorescence increase. Analysis of the kinetics of the fluorescence response indicates that the probe is not detecting phosphorylation itself but rather a shift in the protein's E1/E2 conformational equilibrium induced by preferential phosphate binding to and phosphorylation of enzyme in the E2 conformation. Molecular dynamics simulations of crystal structures in lipid bilayers indicate some change in the protein's hydrophobic thickness during the E1-E2 transition, which may influence the dye response. However, the transition is known to involve significant rearrangement of the protein's highly charged lysine-rich cytoplasmic N-terminal sequence. Using poly-l-lysine as a model of the N-terminus, we show that an analogous response of RH421 to the E1→E2P conformational change is produced by poly-l-lysine binding to the surface of the Na+,K+-ATPase-containing membrane fragments. Thus, it seems that the prime origin of the RH421 fluorescence response is a change in the interaction of the protein's N-terminus with the surrounding membrane. Quantum mechanical calculations of the dye's visible absorption spectrum give further support to this conclusion. The results obtained indicate that membrane binding and release of the N-terminus of the Na+,K+-ATPase α-subunit are intimately involved in the protein's catalytic cycle and could represent an effective site of regulation.


Subject(s)
Fluorescent Dyes , Lipid Bilayers/chemistry , Sodium-Potassium-Exchanging ATPase/chemistry , Molecular Dynamics Simulation , Phosphorylation , Polylysine/chemistry , Protein Conformation , Sequence Analysis, Protein
19.
J Chem Theory Comput ; 12(3): 1000-10, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-26799775

ABSTRACT

Nonequilibrium pulling simulations have been a useful approach for investigating a variety of physical and biological problems. The major target in the simulations is to reconstruct reliable potentials of mean force (PMFs) or unperturbed free-energy profiles for quantitatively addressing both equilibrium mechanistic properties and contributions from nonequilibrium processes. While several current nonequilibrium methods were shown to be accurate in computing free-energy profiles in systems with relatively simple dynamics, they have proved to be unsuitable in more complicated systems. To extend the applicability of nonequilibrium sampling, we demonstrate a novel method that combines Minh-Adib's bidirectional estimator with nonlinear WHAM equations to reconstruct and assess PMFs from relatively fast pulling trajectories. We test the method in a one-dimensional model system and in a system of an antibiotic gramicidin-A (gA) channel, which is considered a significant challenge for nonequilibrium sampling. We identify key parameters for efficiently performing pulling simulations to improve and ensure the convergence and accuracy of estimated PMFs. We show that a few pulling trajectories of a relatively fast pulling speed v = 10 Å/ns can return a fair estimate of the PMF of a single potassium ion in gA.


Subject(s)
Anti-Bacterial Agents/chemistry , Gramicidin/chemistry , Lipid Bilayers/chemistry , Thermodynamics
20.
J Membr Biol ; 248(4): 611-40, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26063070

ABSTRACT

Membrane proteins mediate processes that are fundamental for the flourishing of biological cells. Membrane-embedded transporters move ions and larger solutes across membranes; receptors mediate communication between the cell and its environment and membrane-embedded enzymes catalyze chemical reactions. Understanding these mechanisms of action requires knowledge of how the proteins couple to their fluid, hydrated lipid membrane environment. We present here current studies in computational and experimental membrane protein biophysics, and show how they address outstanding challenges in understanding the complex environmental effects on the structure, function, and dynamics of membrane proteins.


Subject(s)
Membrane Transport Proteins/chemistry , Membrane Transport Proteins/metabolism , Models, Biological , Models, Chemical , Animals , Humans , Membrane Transport Proteins/genetics , Protein Structure, Tertiary , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...