Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 24(26): 7911-7918, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38889449

ABSTRACT

Manipulating spin transport enhances the functionality of electronic devices, allowing them to surpass physical constraints related to speed and power. For this reason, the use of van der Waals multiferroics at the interface of heterostructures offers promising prospects for developing high-performance devices, enabling the electrical control of spin information. Our work focuses primarily on a mechanism for multiferroicity in two-dimensional van der Waals materials that stems from an interplay between antiferromagnetism and the breaking of inversion symmetry in certain bilayers. We provide evidence for spin-electrical couplings that include manipulating van der Waals multiferroic edges via external voltages and the subsequent control of spin transport including for fully multiferroic spin field-effect transistors.

2.
Phys Rev Lett ; 131(22): 226801, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38101376

ABSTRACT

We provide a model capable of accounting for the multiferroicity in certain materials. The model's base is on free electrons and spin moments coupled within nonrelativistic quantum mechanics. The synergistic interplay between the magnetic and electric degrees of freedom that turns into the multiferroic phenomena occurs at a profound quantum mechanical level, conjured by Berry's phases and the quantum theory of polarization. Our results highlight the geometrical nature of the multiferroic order parameter that naturally leads to magnetoelectric domain walls, with promising technological potential.

3.
Nanomaterials (Basel) ; 13(21)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37947687

ABSTRACT

This work presents the analysis of the stability of magnetic bimerons in a cylindrical nanotube. Through micromagnetic simulations, we study the influence of magnetic and geometrical parameters on the bimeron existence and size. The obtained results allow us to present diagram states showing the stability region of a bimeron as a function of the nanotube's height and radius for different anisotropy and Dzyaloshinskii-Moriya interaction strengths. We also obtain two other magnetic states in the range of parameters where the bimeron is not stable: helicoidal and saturated states.

4.
Sci Rep ; 12(1): 5965, 2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35396368

ABSTRACT

The mechanical and magnetic properties of polycrystalline nanoframes were investigated using atomistic molecular dynamics and micromagnetic simulations. The magneto-mechanical response of Fe hollow-like nanocubes was addressed by uniaxial compression carried out by nanoindentation. Our results show that the deformation of a nanoframe is dominated at lower strains by the compression of the nanostructure due to filament bending. This leads to the nanoframe twisting perpendicular to the indentation direction for larger indentation depths. Bending and twisting reduce stress concentration and, at the same time, increase coercivity. This unexpected increase of the coercivity occurs because the mechanical deformation changes the cubic shape of the nanoframe, which in turn drives the system to more stable magnetic states. A coercivity increase of almost 100 mT is found for strains close to 0.03, which are within the elastic regime of the Fe nanoframe. Coercivity then decreases at larger strains. However, in all cases, the coercivity is higher than for the undeformed nanoframe. These results can help in the design of new magnetic devices where mechanical deformation can be used as a primary tool to tailor the magnetic response on nanoscale solids.

5.
ACS Omega ; 7(3): 2583-2590, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35252636

ABSTRACT

Climate change is leading us to search for new materials that allow a more sustainable environmental situation in the long term. Poly(lactic acid) (PLA) has been proposed as a substitute for traditional plastics due to its high biodegradability. Various components have been added to improve their mechanical, thermal, and barrier properties. The modification of the PLA barrier properties by introducing nanoparticles with different shapes is an important aspect to control the molecular diffusion of oxygen and other gas compounds. In this work, we have described changes in oxygen diffusion by introducing nanoparticles of different shapes through molecular dynamics simulations. Our model illustrates that the existence of curved surfaces and the deposition of PLA around them by short chains generate small holes where oxygen accumulates, forming clusters and reducing their mobility. From the several considered shapes, the sphere is the most suitable structure to improve the barrier properties of the PLA.

6.
Nanotechnology ; 28(6): 065709, 2017 Feb 10.
Article in English | MEDLINE | ID: mdl-28067207

ABSTRACT

Segmented magnetic nanowires are a promising route for the development of three dimensional data storage techniques. Such devices require a control of the coercive field and the coupling mechanisms between individual magnetic elements. In our study, we investigate electrodeposited nanomagnets within host templates using vibrating sample magnetometry and observe a strong dependence between nanowire length and coercive field (25 nm-5 µm) and diameter (25-45 nm). A transition from a magnetization reversal through coherent rotation to domain wall propagation is observed at an aspect ratio of approximately 2. Our results are further reinforced via micromagnetic simulations and angle dependent hysteresis loops. The found behavior is exploited to create nanowires consisting of a fixed and a free segment in a spin-valve like structure. The wires are released from the membrane and electrically contacted, displaying a giant magnetoresistance effect that is attributed to individual switching of the coupled nanomagnets. We develop a simple analytical model to describe the observed switching phenomena and to predict stable and unstable regimes in coupled nanomagnets of certain geometries.

7.
Sci Rep ; 5: 12506, 2015 Jul 30.
Article in English | MEDLINE | ID: mdl-26224119

ABSTRACT

For dissipative dynamical systems described by a system of ordinary differential equations, we address the question of how the probability of chaotic dynamics increases with the dimensionality of the phase space. We find that for a system of d globally coupled ODE's with quadratic and cubic non-linearities with randomly chosen coefficients and initial conditions, the probability of a trajectory to be chaotic increases universally from ~10(-5)- 10(-4) for d = 3 to essentially one for d ~ 50. In the limit of large d, the invariant measure of the dynamical systems exhibits universal scaling that depends on the degree of non-linearity, but not on the choice of coefficients, and the largest Lyapunov exponent converges to a universal scaling limit. Using statistical arguments, we provide analytical explanations for the observed scaling, universality, and for the probability of chaos.

SELECTION OF CITATIONS
SEARCH DETAIL
...