Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38917789

ABSTRACT

Spatial transcriptomics (ST) methods unlock molecular mechanisms underlying tissue development, homeostasis, or disease. However, there is a need for easy-to-use, high-resolution, cost-efficient, and 3D-scalable methods. Here, we report Open-ST, a sequencing-based, open-source experimental and computational resource to address these challenges and to study the molecular organization of tissues in 2D and 3D. In mouse brain, Open-ST captured transcripts at subcellular resolution and reconstructed cell types. In primary head-and-neck tumors and patient-matched healthy/metastatic lymph nodes, Open-ST captured the diversity of immune, stromal, and tumor populations in space, validated by imaging-based ST. Distinct cell states were organized around cell-cell communication hotspots in the tumor but not the metastasis. Strikingly, the 3D reconstruction and multimodal analysis of the metastatic lymph node revealed spatially contiguous structures not visible in 2D and potential biomarkers precisely at the 3D tumor/lymph node boundary. All protocols and software are available at https://rajewsky-lab.github.io/openst.

2.
iScience ; 26(1): 105878, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36691625

ABSTRACT

Poly(A) tails protect RNAs from degradation and their deadenylation rates determine RNA stability. Although poly(A) tails are generated in the nucleus, deadenylation of tails has mostly been investigated within the cytoplasm. Here, we combined long-read sequencing with metabolic labeling, splicing inhibition and cell fractionation experiments to quantify, separately, the genesis and trimming of nuclear and cytoplasmic tails in vitro and in vivo. We present evidence for genome-wide, nuclear synthesis of tails longer than 200 nt, which are rapidly shortened after transcription. Our data suggests that rapid deadenylation is a nuclear process, and that different classes of transcripts and even transcript isoforms have distinct nuclear tail lengths. For example, many long-noncoding RNAs retain long poly(A) tails. Modeling deadenylation dynamics predicts nuclear deadenylation about 10 times faster than cytoplasmic deadenylation. In summary, our data suggests that nuclear deadenylation might be a key mechanism for regulating mRNA stability, abundance, and subcellular localization.

3.
Mol Syst Biol ; 19(10): 1-23, 2023 10.
Article in English | MEDLINE | ID: mdl-38778223

ABSTRACT

RNA abundance is tightly regulated in eukaryotic cells by modulating the kinetic rates of RNA production, processing, and degradation. To date, little is known about time­dependent kinetic rates during dynamic processes. Here, we present SLAM­Drop­seq, a method that combines RNA metabolic labeling and alkylation of modified nucleotides in methanol­fixed cells with droplet­based sequencing to detect newly synthesized and preexisting mRNAs in single cells. As a first application, we sequenced 7280 HEK293 cells and calculated gene­specific kinetic rates during the cell cycle using the novel package Eskrate. Of the 377 robust­cycling genes that we identified, only a minor fraction is regulated solely by either dynamic transcription or degradation (6 and 4%, respectively). By contrast, the vast majority (89%) exhibit dynamically regulated transcription and degradation rates during the cell cycle. Our study thus shows that temporally regulated mRNA degradation is fundamental for the correct expression of a majority of cycling genes. SLAM­Drop­seq, combined with Eskrate, is a powerful approach to understanding the underlying mRNA kinetics of single­cell gene expression dynamics in continuous biological processes.


Subject(s)
Cell Cycle , RNA, Messenger , RNA, Messenger/genetics , RNA, Messenger/metabolism , Cell Cycle/genetics , Kinetics , Sequence Analysis, RNA/methods , Humans
4.
Acta Crystallogr D Struct Biol ; 78(Pt 11): 1373-1383, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36322420

ABSTRACT

Small nuclear ribonucleoprotein complexes (snRNPs) represent the main subunits of the spliceosome. While the assembly of the snRNP core particles has been well characterized, comparably little is known of the incorporation of snRNP-specific proteins and the mechanisms of snRNP recycling. U5 snRNP assembly in yeast requires binding of the the Aar2 protein to Prp8p as a placeholder to preclude premature assembly of the SNRNP200 helicase, but the role of the human AAR2 homolog has not yet been investigated in detail. Here, a crystal structure of human AAR2 in complex with the RNase H-like domain of the U5-specific PRPF8 (PRP8F RH) is reported, revealing a significantly different interaction between the two proteins compared with that in yeast. Based on the structure of the AAR2-PRPF8 RH complex, the importance of the interacting regions and residues was probed and AAR2 variants were designed that failed to stably bind PRPF8 in vitro. Protein-interaction studies of AAR2 with U5 proteins using size-exclusion chromatography reveal similarities and marked differences in the interaction patterns compared with yeast Aar2p and imply phosphorylation-dependent regulation of AAR2 reminiscent of that in yeast. It is found that in vitro AAR2 seems to lock PRPF8 RH in a conformation that is only compatible with the first transesterification step of the splicing reaction and blocks a conformational switch to the step 2-like, Mg2+-coordinated conformation that is likely during U5 snRNP biogenesis. These findings extend the picture of AAR2 PRP8 interaction from yeast to humans and indicate a function for AAR2 in the spliceosomal assembly process beyond its role as an SNRNP200 placeholder in yeast.


Subject(s)
Ribonucleoprotein, U5 Small Nuclear , Saccharomyces cerevisiae Proteins , Humans , Ribonucleoprotein, U5 Small Nuclear/chemistry , Ribonucleoprotein, U5 Small Nuclear/metabolism , Saccharomyces cerevisiae/metabolism , Ribonucleoprotein, U4-U6 Small Nuclear/chemistry , Ribonucleoprotein, U4-U6 Small Nuclear/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Ribonuclease H/metabolism , RNA-Binding Proteins/chemistry
5.
Nat Methods ; 16(9): 879-886, 2019 09.
Article in English | MEDLINE | ID: mdl-31384046

ABSTRACT

Although messenger RNAs are key molecules for understanding life, until now, no method has existed to determine the full-length sequence of endogenous mRNAs including their poly(A) tails. Moreover, although non-A nucleotides can be incorporated in poly(A) tails, there also exists no method to accurately sequence them. Here, we present full-length poly(A) and mRNA sequencing (FLAM-seq), a rapid and simple method for high-quality sequencing of entire mRNAs. We report a complementary DNA library preparation method coupled to single-molecule sequencing to perform FLAM-seq. Using human cell lines, brain organoids and Caenorhabditis elegans we show that FLAM-seq delivers high-quality full-length mRNA sequences for thousands of different genes per sample. We find that 3' untranslated region length is correlated with poly(A) tail length, that alternative polyadenylation sites and alternative promoters for the same gene are linked to different tail lengths, and that tails contain a substantial number of cytosines.


Subject(s)
Brain/metabolism , Organoids/metabolism , Poly A/chemistry , Poly A/metabolism , RNA Processing, Post-Transcriptional , RNA, Messenger/metabolism , Sequence Analysis, RNA/methods , Animals , Caenorhabditis elegans , Gene Expression Regulation , HeLa Cells , Humans , Poly A/genetics , Polyadenylation , Promoter Regions, Genetic , RNA, Messenger/genetics
6.
Science ; 358(6360): 194-199, 2017 10 13.
Article in English | MEDLINE | ID: mdl-28860209

ABSTRACT

By the onset of morphogenesis, Drosophila embryos consist of about 6000 cells that express distinct gene combinations. Here, we used single-cell sequencing of precisely staged embryos and devised DistMap, a computational mapping strategy to reconstruct the embryo and to predict spatial gene expression approaching single-cell resolution. We produced a virtual embryo with about 8000 expressed genes per cell. Our interactive Drosophila Virtual Expression eXplorer (DVEX) database generates three-dimensional virtual in situ hybridizations and computes gene expression gradients. We used DVEX to uncover patterned expression of transcription factors and long noncoding RNAs, as well as signaling pathway components. Spatial regulation of Hippo signaling during early embryogenesis suggests a mechanism for establishing asynchronous cell proliferation. Our approach is suitable to generate transcriptomic blueprints for other complex tissues.


Subject(s)
Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Embryo, Nonmammalian/cytology , Single-Cell Analysis/methods , Transcriptome , Animals , Cell Communication , Drosophila Proteins/genetics , In Situ Hybridization , Intracellular Signaling Peptides and Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Signal Transduction/genetics
7.
BMC Biol ; 15(1): 44, 2017 05 19.
Article in English | MEDLINE | ID: mdl-28526029

ABSTRACT

BACKGROUND: Recent developments in droplet-based microfluidics allow the transcriptional profiling of thousands of individual cells in a quantitative, highly parallel and cost-effective way. A critical, often limiting step is the preparation of cells in an unperturbed state, not altered by stress or ageing. Other challenges are rare cells that need to be collected over several days or samples prepared at different times or locations. METHODS: Here, we used chemical fixation to address these problems. Methanol fixation allowed us to stabilise and preserve dissociated cells for weeks without compromising single-cell RNA sequencing data. RESULTS: By using mixtures of fixed, cultured human and mouse cells, we first showed that individual transcriptomes could be confidently assigned to one of the two species. Single-cell gene expression from live and fixed samples correlated well with bulk mRNA-seq data. We then applied methanol fixation to transcriptionally profile primary cells from dissociated, complex tissues. Low RNA content cells from Drosophila embryos, as well as mouse hindbrain and cerebellum cells prepared by fluorescence-activated cell sorting, were successfully analysed after fixation, storage and single-cell droplet RNA-seq. We were able to identify diverse cell populations, including neuronal subtypes. As an additional resource, we provide 'dropbead', an R package for exploratory data analysis, visualization and filtering of Drop-seq data. CONCLUSIONS: We expect that the availability of a simple cell fixation method will open up many new opportunities in diverse biological contexts to analyse transcriptional dynamics at single-cell resolution.


Subject(s)
Cells, Cultured/cytology , Flow Cytometry/methods , Gene Expression Profiling/methods , Single-Cell Analysis/methods , Animals , Cerebellum/cytology , Drosophila/cytology , Embryo, Nonmammalian/cytology , Flow Cytometry/instrumentation , Gene Expression Profiling/instrumentation , Humans , Methanol/chemistry , Mice , RNA, Messenger/analysis , Rhombencephalon/cytology , Sequence Analysis, RNA , Single-Cell Analysis/instrumentation , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...