Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 267(Pt 2): 120588, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34782269

ABSTRACT

Fourier Transform Infra-Red (FTIR) spectroscopy provides structural information of prime importance to understand ions coordination to adsorbents. This consequently aids in the design of improved ion exchange materials and help in deriving the optimum adsorption conditions. In the present work, the adsorption mechanism of both U(VI)/Th(IV) and Ra(II)/Ba(II) radionuclides couples onto polystyrene-nano manganese dioxide (PS-NMO) composite is reported in relation to the effect of working solution pH. The separation of each radionuclide couple; i.e. U(VI)/Th(IV) and Ra(II)/Ba(II); could be effectively achieved at pH = 3 and pH = 1 respectively. The pH values not only determine the species of the respected elements that are mainly present in aqueous solution before applying the adsorbent, but it also alters the structure of the composite adsorbent. FTIR spectroscopy showed that Th(IV) formed inner sphere complexes and occupied the A site in the dioxide layer, while U(VI) formed outer sphere complexes on the surface of the composite. Spectra subtraction showed that some aromatic bands and vinyl C-H bands were split or shifted to lower wavenumbers with the loading of Ba(II). This was attributed to changes in the composite stereochemistry to accommodate Ba(II). The working solution pH could be the key in the separation process of both U(VI)/Th(IV) and Ra(II)/Ba(II) from their mixture, and FTIR spectroscopy stands as a useful technique to explain the difference between metal ions responses to adsorbants.


Subject(s)
Polystyrenes , Uranium , Adsorption , Fourier Analysis , Hydrogen-Ion Concentration , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...