Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 24(30): 306004, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22771851

ABSTRACT

Magnetoresistance measurements have been exploited to gain information on the magnetic microstructure of two Ni/NiO nanogranular materials consisting of Ni nanocrystallites (mean size of the order of 10 nm) embedded in a NiO matrix and differing in the amount of metallic Ni, ~33 and ~61 vol%. The overall conductance of both samples is metallic in character, indicating that the Ni content is above the percolation threshold for electric conductivity; the electric resistivity is two orders of magnitude smaller in the sample with higher Ni fraction (10(-5) Ωm against 10(-3) Ωm). An isotropic, spin-dependent magnetoresistance has been measured in the sample with lower Ni content, whereas both isotropic and anisotropic magnetoresistance phenomena coexist in the other material. This study, associated with magnetization loop measurements and the comparison with the exchange bias effect, allows one to conclude that in the sample with lower Ni content neither the physical percolation of the Ni nanocrystallites nor the magnetic percolation (i.e., formation of a homogeneous ferromagnetic network) are achieved; in the other sample physical percolation is reached while magnetic percolation is still absent. In both behaviors, a key role is played by the NiO matrix, which brings about a magnetic nanocrystallite/matrix interface exchange energy term and rules both the direct exchange interaction among Ni nanocrystallites and the magnetotransport properties of these nanogranular materials.


Subject(s)
Electric Conductivity , Magnetic Phenomena , Metal Nanoparticles/chemistry , Nickel/chemistry , Particle Size , Temperature
2.
Ultrason Sonochem ; 19(4): 877-82, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22236507

ABSTRACT

Hydrophilic magnetite nanoparticles in the size range 30-10nm are easily and rapidly prepared under ultrasonic irradiation of Fe(OH)(2) in di- and tri-ethylene glycol/water solution with volume ratio varying between 7:3 and 3:7. Structural (XRD) and morphological (SEM) characterization reveal good crystalline and homogeneous particles whereas, when solvothermally prepared, the particles are inhomogeneous and aggregated. The sonochemically prepared particles are versatile, i.e. well suited to covalently bind molecules because of the free glycol hydroxylic groups on their surface or exchange the diethylene or triethylene glycol ligand. They can be easily transferred in hydrophobic solvents too. Room-temperature magnetic hysteresis properties measured by means of Vibrating Sample Magnetometer (VSM) display a nearly superparamagnetic character. The sonochemical preparation is easily scalable to meet industrial demand.


Subject(s)
Ferrosoferric Oxide/chemical synthesis , Nanoparticles/chemistry , Ultrasonics , Ferrosoferric Oxide/chemistry , Hydrophobic and Hydrophilic Interactions , Particle Size , Surface Properties
3.
Acta Biomater ; 1(4): 421-9, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16701823

ABSTRACT

Ferrimagnetic glass-ceramics are potential candidates for magnetic induction hyperthermia, which is one form of inducing deep-regional hyperthermia, by using a magnetic field. The aim of this work was to analyse the influence of the amount of crystallised magnetite on the magnetic properties of glass-ceramic samples. Thus, two different ferrimagnetic glass-ceramics with the composition of the system Na(2)O-CaO-SiO(2)-P(2)O(5)-FeO-Fe(2)O(3) were prepared by melting at 1500 degrees C for 30 min of the coprecipitation-derived starting products. The X-ray diffraction patterns show the presence of nanometric magnetite crystals in a glassy matrix after cooling from melting temperature. The estimated amount of crystallised magnetite varies between 20 and 45 wt.%, as a function of the chemical composition. The morphology of the crystals was studied by scanning electron micrography and transmission electron micrography. Glass transition temperature and thermal stability were investigated by differential thermal analysis. Magnetic hysteresis cycles were analysed using a vibrating sample magnetometer with a maximum applied field of 17 kOe, at room temperature, in quasi-static conditions. Calorimetric measurements were carried out using a magnetic induction furnace. The power losses estimated from calorimetric measurements under a magnetic field of 40 kA/m and 440 kHz are 65 W/g for the glass-ceramic with lower iron oxides content and 25 W/g for the glass-ceramic with higher iron oxide content.


Subject(s)
Biocompatible Materials/chemistry , Ceramics/chemistry , Crystallization/methods , Ferric Compounds/chemistry , Glass/chemistry , Magnetics , Fractional Precipitation , Materials Testing , Particle Size , Surface Properties
5.
Phys Rev B Condens Matter ; 47(6): 3118-3125, 1993 Feb 01.
Article in English | MEDLINE | ID: mdl-10006393
SELECTION OF CITATIONS
SEARCH DETAIL
...