Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Differ ; 22(9): 1451-62, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25613381

ABSTRACT

Monoubiquitination of core histone 2A (H2A-K119u) has a critical role in gene regulation in hematopoietic differentiation and other developmental processes. To explore the interplay of histone H2A deubiquitinase Myb-like SWIRM and MPN domain containing1 (2A-DUB/Mysm1) with the p53 axis in the sequential differentiation of mature lymphocytes from progenitors, we systematically analyzed hematopoiesis and early T-cell development using Mysm1(-/-) and p53(-/-)Mysm1(-/-) mice. Mysm1(-/-) thymi were severely hypoplastic with <10% of wild-type cell numbers as a result of a reduction of early thymocyte progenitors in context with defective hematopoietic stem cells, a partial block at the double-negative (DN)1-DN2 transition and increased apoptosis of double-positive thymocytes. Increased rates of apoptosis were also detected in other tissues affected by Mysm1 deficiency, including the developing brain and the skin. By quantitative PCR and chromatin immunoprecipitation analyses, we identified p19(ARF), an important regulator of p53 tumor suppressor protein levels, as a potential Mysm1 target gene. In newly generated p53(-/-)Mysm1(-/-) double-deficient mice, anomalies of Mysm1(-/-) mice including reduction of lymphoid-primed multipotent progenitors, reduced thymocyte numbers and viability, and interestingly defective B-cell development, growth retardation, neurological defects, skin atrophy, and tail malformation were almost completely restored as well, substantiating the involvement of the p53 pathway in the alterations caused by Mysm1 deficiency. In conclusion, this investigation uncovers a novel link between H2A deubiquitinase 2A-DUB/Mysm1 and suppression of p53-mediated apoptotic programs during early lymphoid development and other developmental processes.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p19/metabolism , Endopeptidases/metabolism , Hematopoiesis/physiology , Histones/metabolism , T-Lymphocytes/cytology , Tumor Suppressor Protein p53/metabolism , Animals , Cell Differentiation/physiology , Gene Expression Profiling , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , T-Lymphocytes/metabolism , Trans-Activators , Ubiquitin-Specific Proteases
SELECTION OF CITATIONS
SEARCH DETAIL
...