Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Prolif ; 40(4): 580-94, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17635524

ABSTRACT

OBJECTIVE: Lapatinib (Tykerb, GW572016), a potent inhibitor of the catalytic activities of epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) (ErbB2), inhibits population growth of selected EGFR and HER2 overexpressing cell lines. Previous studies with a small number of cell lines suggest a correlation between overexpression of EGFR and/or HER2 and sensitivity to growth inhibition by lapatinib; however, the precise determinants of lapatinib selectivity for tumour and/or other cells remain unclear. MATERIALS AND METHODS: To clarify the determinants of its selectivity in cultured cells, lapatinib-induced cell population growth inhibition and relative EGFR and HER2 protein expression were quantified in 61 different human tumour cell lines from 12 tumour types, two oncogene transformed human cell lines and two normal human cell cultures. Using statistical tools to analyse the data, a model describing the relationship between lapatinib IC(50) (the response variable) and EGFR and HER2 expression and tissue type (explanatory variables) was derived. CONCLUSION: The results suggest that simultaneous consideration of EGFR and HER2 expression, as well as tissue type yields the best determinant of lapatinib selectivity in cultured cells.


Subject(s)
Antineoplastic Agents/pharmacology , ErbB Receptors/metabolism , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Receptor, ErbB-2/metabolism , Cell Line , Cell Line, Transformed , Cell Line, Tumor , Humans , Lapatinib , Models, Statistical
2.
Cancer Res ; 61(19): 7196-203, 2001 Oct 01.
Article in English | MEDLINE | ID: mdl-11585755

ABSTRACT

The type I receptor tyrosine kinases constitute a family of transmembrane proteins involved in various aspects of cell growth and survival and have been implicated in the initiation and progression of several types of human malignancies. The best characterized of these proteins are the epidermal growth factor receptor (EGFR) and ErbB-2 (HER-2/neu). We have developed potent quinazoline and pyrido-[3,4-d]-pyrimidine small molecules that are dual inhibitors of ErbB-2 and EGFR. The compounds demonstrate potent in vitro inhibition of the ErbB-2 and EGFR kinase domains with IC(50)s <80 nM. Growth of ErbB-2- and EGFR-expressing tumor cell lines is inhibited at concentrations <0.5 microM. Selectivity for tumor cell growth inhibition versus normal human fibroblast growth inhibition ranges from 10- to >75-fold. Tumor growth in mouse s.c. xenograft models of the BT474 and HN5 cell lines is inhibited in a dose-responsive manner using oral doses of 10 and 30 mg/kg twice per day. In addition, the tested compounds caused a reduction of ErbB-2 and EGFR autophosphorylation in tumor fragments from these xenograft models. These data indicate that these compounds have potential use as therapy in the broad population of cancer patients overexpressing ErbB-2 and/or EGFR.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , ErbB Receptors/antagonists & inhibitors , Quinazolines/pharmacology , Receptor, ErbB-2/antagonists & inhibitors , Animals , Cell Division/drug effects , Drug Screening Assays, Antitumor , Female , Growth Inhibitors/pharmacology , Humans , Mice , Mice, SCID , Structure-Activity Relationship , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
3.
Mol Cancer Ther ; 1(2): 85-94, 2001 Dec.
Article in English | MEDLINE | ID: mdl-12467226

ABSTRACT

The epidermal growth factor receptor (EGFR) and ErbB-2 transmembrane tyrosine kinases are currently being targeted by various mechanisms in the treatment of cancer. GW2016 is a potent inhibitor of the ErbB-2 and EGFR tyrosine kinase domains with IC50 values against purified EGFR and ErbB-2 of 10.2 and 9.8 nM, respectively. This report describes the efficacy in cell growth assays of GW2016 on human tumor cell lines overexpressing either EGFR or ErbB-2: HN5 (head and neck), A-431 (vulva), BT474 (breast), CaLu-3 (lung), and N87 (gastric). Normal human foreskin fibroblasts, nontumorigenic epithelial cells (HB4a), and nonoverexpressing tumor cells (MCF-7 and T47D) were tested as negative controls. After 3 days of compound exposure, average IC50 values for growth inhibition in the EGFR- and ErbB-2-overexpressing tumor cell lines were < 0.16 microM. The average selectivity for the tumor cells versus the human foreskin fibroblast cell line was 100-fold. Inhibition of EGFR and ErbB-2 receptor autophosphorylation and phosphorylation of the downstream modulator, AKT, was verified by Western blot analysis in the BT474 and HN5 cell lines. As a measure of cytotoxicity versus growth arrest, the HN5 and BT474 cells were assessed in an outgrowth assay after a transient exposure to GW2016. The cells were treated for 3 days in five concentrations of GW2016, and cell growth was monitored for an additional 12 days after removal of the compound. In each of these tumor cell lines, concentrations of GW2016 were reached where outgrowth did not occur. Furthermore, growth arrest and cell death were observed in parallel experiments, as determined by bromodeoxyuridine incorporation and propidium iodide staining. GW2016 treatment inhibited tumor xenograft growth of the HN5 and BT474 cells in a dose-responsive manner at 30 and 100 mg/kg orally, twice daily, with complete inhibition of tumor growth at the higher dose. Together, these results indicate that GW2016 achieves excellent potency on tumor cells with selectivity for tumor versus normal cells and suggest that GW2016 has value as a therapy for patients with tumors overexpressing either EGFR or ErbB-2.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Division/drug effects , Enzyme Inhibitors/pharmacology , ErbB Receptors/antagonists & inhibitors , Furans/pharmacology , Neoplasms, Experimental/drug therapy , Quinazolines/pharmacology , Receptor, ErbB-2/antagonists & inhibitors , Animals , Apoptosis , Blotting, Western , Cell Cycle/drug effects , Epidermal Growth Factor/pharmacology , ErbB Receptors/metabolism , Female , Fibroblasts/drug effects , Humans , Infant, Newborn , Mice , Mice, Nude , Mice, SCID , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Phosphorylation , Precipitin Tests , Receptor, ErbB-2/metabolism , Signal Transduction/drug effects , Skin/cytology , Tumor Cells, Cultured/drug effects , Tumor Cells, Cultured/metabolism , Xenograft Model Antitumor Assays
4.
Hybridoma ; 19(4): 317-21, 2000 Aug.
Article in English | MEDLINE | ID: mdl-11001404

ABSTRACT

We report on the rapid generation of two monoclonal antibodies, ATM A16.35 and ATM D16.11, that bind to the kinase domain of mutated ataxia telangiectasia (ATM). These antibodies were generated against E. coli-expressed recombinant protein using the RIMMS strategy. We show that ATM A16.35 binds ATM by Western blot analysis, and ATM D16.11 forms immune complexes with native ATM in immunoprecipitations without neutralizing kinase activity.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Phosphatidylinositol 3-Kinases/metabolism , Protein Serine-Threonine Kinases/immunology , Animals , Antibodies, Monoclonal/immunology , Antibody Affinity/immunology , Antibody Specificity/immunology , Ataxia Telangiectasia Mutated Proteins , Blotting, Western , Cell Cycle Proteins , Cell Line , DNA-Binding Proteins , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunization , Mice , Peptide Fragments , Precipitin Tests , Recombinant Proteins/immunology , T-Lymphocytes/enzymology , Tumor Suppressor Proteins
5.
J Med Chem ; 41(11): 1894-908, 1998 May 21.
Article in English | MEDLINE | ID: mdl-9599239

ABSTRACT

The design, synthesis, and evaluation of dipeptide analogues as ligands for the pp60c-src SH2 domain are described. The critical binding interactions between Ac-Tyr-Glu-N(n-C5H11)2 (2) and the protein are established and form the basis for our structure-based drug design efforts. The effects of changes in both the C-terminal (11-27) and N-terminal (51-69) portions of the dipeptide are explored. Analogues with reduced overall charge (92-95) are also investigated. We demonstrate the feasibility of pairing structurally diverse subunits in a modest dipeptide framework with the goal of increasing the druglike attributes without sacrificing binding affinity.


Subject(s)
Dipeptides/pharmacology , Enzyme Inhibitors/pharmacology , Proto-Oncogene Proteins pp60(c-src)/antagonists & inhibitors , src Homology Domains , Crystallography, X-Ray , Dipeptides/chemical synthesis , Dipeptides/chemistry , Dipeptides/metabolism , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Enzyme-Linked Immunosorbent Assay , Humans , Ligands , Models, Molecular , Molecular Conformation , Proto-Oncogene Proteins pp60(c-src)/metabolism , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 8(10): 1189-94, 1998 May 19.
Article in English | MEDLINE | ID: mdl-9871733

ABSTRACT

The X-ray crystal structure of the src SH2 domain revealed the presence of a thiol residue (Cys 188) located proximal to the phosphotyrosine portion of a dipeptide ligand. An aldehyde bearing ligand (1) was designed to position an electrophilic carbonyl group in the vicinity of the thiol. X-ray crystallographic and NMR examination of the complex formed between (1) and the src SH2 domain revealed a hemithioacetal formed by addition of the thiol to the aldehyde group with an additional stabilizing hydrogen bond between the acetal hydroxyl and a backbone carbonyl.


Subject(s)
Dipeptides/chemistry , Protein Conformation , Proteins/chemistry , src Homology Domains , Aldehydes , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Cysteine , Dipeptides/chemical synthesis , Hydrogen Bonding , Ligands , Magnetic Resonance Spectroscopy , Models, Molecular , Phosphotyrosine
SELECTION OF CITATIONS
SEARCH DETAIL
...