Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 213: 112413, 2022 May.
Article in English | MEDLINE | ID: mdl-35189477

ABSTRACT

Understanding Extracellular Polymeric Substances (EPS) interaction on a well-defined chromium surface is of importance especially for biocorrosion processes. Adsorption of EPS extracted from Pseudoalteromonas NCIMB 2021 on Cr surfaces was investigated using in situ quartz crystal microbalance (QCM) and X-ray photoelectron spectroscopy (XPS). We show that EPS adsorption is an irreversible process. The amount of adsorbed EPS increases with increasing EPS concentration in solution. For low EPS concentration, the surface is only partially covered by EPS, whereas a continuous organic film of around 15 nm is formed at the surface for high EPS concentrations. An in-depth structuration of this organic layer is evidenced with a strong enrichment of proteins in the inner part and of polysaccharides in the outer part. Adhesion of Pseudoalteromonas NCIMB 2021 has been tested on Cr surfaces covered or not by EPS extracted from Pseudoalteromonas NCIMB 2021. EPS conditioning with a 15 nm film inhibits bacterial adhesion on Cr, showing that this organic film has efficient anti-adhesive properties.


Subject(s)
Adhesives , Extracellular Polymeric Substance Matrix , Adsorption , Metals , Quartz Crystal Microbalance Techniques , Surface Properties
2.
Biointerphases ; 15(4): 041014, 2020 08 31.
Article in English | MEDLINE | ID: mdl-32867504

ABSTRACT

The aim of this work was to investigate the bacteria-surface interactions occurring during the first hour of adhesion of marine Pseudoalteromonas NCIMB 2021 at the surface of 2304 lean duplex stainless steel in artificial seawater. A complete characterization of the biofilm and the passive film was performed coupling epifluorescence microscopy, scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), and time of flight secondary ion mass spectrometry (ToF-SIMS). The coupling of XPS and ToF-SIMS analyses revealed that (1) protein and polysaccharide contents in the biofilm are similar in the presence or absence of nutrients, (2) the biofilm is mainly composed of proteins and the protein content is similar to the one of Tightly Bound EPS, (3) increased bacterial activity due to nutrients leads to chromium enrichment in the passive film in close vicinity to the bacteria.


Subject(s)
Biofilms/growth & development , Pseudoalteromonas/physiology , Stainless Steel/chemistry , Bacterial Adhesion/drug effects , Biofilms/drug effects , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Seawater/microbiology , Spectrometry, Mass, Secondary Ion , Stainless Steel/pharmacology , Surface Properties
3.
Food Microbiol ; 91: 103538, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32539949

ABSTRACT

Surface contamination with droplets containing bacteria is of concern in the food industry and other environments where hygiene control is essential. Deposition patterns after the drying of contaminated droplets is affected by numerous parameters. The present study evaluated the rate of evaporation and the shape of deposition patterns after the drying of water droplets on a panel of materials with different surface properties (topography, hydrophobicity). The influence of the particle properties (in this study 1 µm-microspheres and two bacterial spores) was also investigated. Polystyrene microspheres were hydrophobic, while Bacillus spores were hydrophilic or hydrophobic, and surrounded by different surface features. In contrast to material topography, hydrophobicity was shown to deeply affect droplet evaporation, with the formation of small, thick deposits with microspheres or hydrophilic spores. Among the particle properties, the spore morphology (size and round/ovoid shape) did not clearly affect the deposition pattern. Conversely, hydrophobic spores aggregated to form clusters, which quickly settled on the materials and either failed to migrate, or only migrated to a slight extent on the surface, resulting in a steady distribution of spores or spore clusters over the whole contaminated area. Adherent bacteria or spores are known to be highly resistant to many stressful environmental conditions. In view of all the quite different patterns obtained following drying of spore-containing droplets, it seems likely that some of these would entail enhanced resistance to hygienic processes.


Subject(s)
Desiccation , Manufactured Materials/analysis , Water , Bacillus/chemistry , Bacillus/classification , Bacillus/physiology , Bacterial Adhesion , Hydrophobic and Hydrophilic Interactions , Microspheres , Spores, Bacterial/chemistry , Spores, Bacterial/classification , Spores, Bacterial/physiology , Surface Properties , Water/analysis , Water Microbiology
4.
Colloids Surf B Biointerfaces ; 182: 110398, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31376688

ABSTRACT

The current experimental study investigates the influence of latex microsphere particles' size on the assessment of their hydrophilic/hydrophobic character, using the method known as "Microbial Adhesion to Hydrocarbons" (MATH). Since bacteria surfaces often change according to the environment in which they find themselves, most of the experiments here were carried out using the calibrated latex microspheres Polybeads® and Yellow-green Fluoresbrite® (Polyscience) microspheres with diameters between 0.2 µm and 4.5 µm. All the beads had a density of ˜1.05 g/cm3. The first set of experiments was performed to adapt the procedure for measurements of water contact angles to microsphere lawns. It was found that all the microspheres tested were hydrophobic, when using a water contact angle of around 110-118°. However, wide differences were observed using the MATH method. The smaller microspheres (0.2 µm, 0.5 µm +/- 0.75 µm) exhibited a poor affinity to hexadecane, even after long contact times, suggesting a hydrophilic character. In contrast, larger microspheres quickly adhered to hexadecane, which is consistent with the values obtained for the water contact angles observed. These results suggest that, at least where hydrophobic particles are concerned, the MATH method is not suitable for the assessment of the hydrophobic character of particles with diameters of less than 1.0 µm. We lastly investigated whether the data obtained for Bacillus spores could also be affected by spore size. The hydrophobicity of spores of eight Bacillus strains was analysed by both MATH and contact angle. Some discrepancies were observed between both methods but could not be related their size (length or width).


Subject(s)
Bacillus/metabolism , Bacterial Adhesion , Hydrocarbons/metabolism , Latex/metabolism , Microspheres , Spores, Bacterial/metabolism , Alkanes/chemistry , Alkanes/metabolism , Bacillus/classification , Hydrocarbons/chemistry , Hydrophobic and Hydrophilic Interactions , Latex/chemistry , Particle Size , Spores, Bacterial/chemistry , Surface Properties , Water/chemistry , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL