Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mol Ther ; 25(12): 2661-2675, 2017 Dec 06.
Article in English | MEDLINE | ID: mdl-28890324

ABSTRACT

The major drawback of the Baculovirus/Sf9 system for recombinant adeno-associated viral (rAAV) manufacturing is that most of the Bac-derived rAAV vector serotypes, with few exceptions, demonstrate altered capsid compositions and lower biological potencies. Here, we describe a new insect cell-based production platform utilizing attenuated Kozak sequence and a leaky ribosome scanning to achieve a serotype-specific modulation of AAV capsid proteins stoichiometry. By way of example, rAAV5 and rAAV9 were produced and comprehensively characterized side by side with HEK293-derived vectors. A mass spectrometry analysis documented a 3-fold increase in both viral protein (VP)1 and VP2 capsid protein content compared with human cell-derived vectors. Furthermore, we conducted an extensive analysis of encapsidated single-stranded viral DNA using next-generation sequencing and show a 6-fold reduction in collaterally packaged contaminating DNA for rAAV5 produced in insect cells. Consequently, the re-designed rAAVs demonstrated significantly higher biological potencies, even in a comparison with HEK293-manufactured rAAVs mediating, in the case of rAAV5, 4-fold higher transduction of brain tissues in mice. Thus, the described system yields rAAV vectors of superior infectivity and higher genetic identity providing a scalable platform for good manufacturing practice (GMP)-grade vector production.


Subject(s)
Cell Culture Techniques , Dependovirus/genetics , Genetic Vectors/genetics , Virus Replication , Amino Acid Sequence , Animals , Capsid Proteins/chemistry , Capsid Proteins/genetics , Cell Line , Dependovirus/classification , Dependovirus/physiology , Gene Expression , Gene Order , Genes, Reporter , HEK293 Cells , Humans , Mice , Sf9 Cells , Tissue Distribution , Transduction, Genetic , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...