Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Cytokine X ; 3(2): 100053, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34189454

ABSTRACT

Type I interferons (IFNs) play a crucial role in the establishment of an antiviral state via signaling through their cognate type I IFN receptor (IFNAR). In this study, a replication-competent but highly attenuated strain of VSV (rVSVΔm51) carrying a deletion at position 51 of the matrix protein to remove suppression of anti-viral type I IFN responses was used to explore the effect of disrupted IFNAR signaling on inflammatory cytokine responses in mice. The kinetic responses of interleukin-6, tumor necrosis factor-α and interleukin-12 were evaluated in virus-infected male and female mice with or without concomitant antibody-mediated IFNAR-blockade. Unlike controls, both male and female IFNAR-blocked mice showed signs of sickness by 24-hours post-infection. Female IFNAR-blocked mice experienced greater morbidity as demonstrated by a significant decrease in body temperature. This was not the case for males. In addition, females with IFNAR-blockade mounted prolonged and exaggerated systemic inflammatory cytokine responses to rVSVΔm51. This was in stark contrast to controls with intact IFNAR signaling and males with IFNAR-blockade; they were able to down-regulate virus-induced inflammatory cytokine responses by 24-hours post-infection. Exaggerated cytokine responses in females with impaired IFNAR signaling was associated with more effective control of viremia than their male counterparts. However, the trade-off was greater immune-mediated morbidity. The results of this study demonstrated a role for IFNAR signaling in the down-regulation of antiviral cytokine responses, which was strongly influenced by sex. Our findings suggested that the potential to mount toxic cytokine responses to a virus with concomitant disruption of IFNAR signaling was heavily biased towards females.

2.
Immunology ; 152(2): 175-184, 2017 10.
Article in English | MEDLINE | ID: mdl-28621843

ABSTRACT

Altered metabolism is a hallmark of cancers, including shifting oxidative phosphorylation to glycolysis and up-regulating glutaminolysis to divert carbon sources into biosynthetic pathways that promote proliferation and survival. Therefore, metabolic inhibitors represent promising anti-cancer drugs. However, T cells must rapidly divide and survive in harsh microenvironments to mediate anti-cancer effects. Metabolic profiles of cancer cells and activated T lymphocytes are similar, raising the risk of metabolic inhibitors impairing the immune system. Immune checkpoint blockade provides an example of how metabolism can be differentially impacted to impair cancer cells but support T cells. Implications for research with metabolic inhibitors are discussed.


Subject(s)
Cellular Reprogramming , Energy Metabolism , Lymphocytes, Tumor-Infiltrating/metabolism , Neoplasms/metabolism , Tumor Microenvironment , Animals , Antineoplastic Agents/therapeutic use , Cell Proliferation , Cellular Reprogramming/drug effects , Energy Metabolism/drug effects , Glycolysis , Humans , Hydrogen-Ion Concentration , Lymphocyte Activation , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/pathology , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/pathology , Oxidative Phosphorylation , Phenotype , Signal Transduction , Tumor Escape
SELECTION OF CITATIONS
SEARCH DETAIL
...