Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(24): e2320064121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38833477

ABSTRACT

Synapse maintenance is essential for generating functional circuitry, and decrement in this process is a hallmark of neurodegenerative disease. Yet, little is known about synapse maintenance in vivo. Cysteine string protein α (CSPα), encoded by the Dnajc5 gene, is a synaptic vesicle chaperone that is necessary for synapse maintenance and linked to neurodegeneration. To investigate the transcriptional changes associated with synapse maintenance, we performed single-nucleus transcriptomics on the cortex of young CSPα knockout (KO) mice and littermate controls. Through differential expression and gene ontology analysis, we observed that both neurons and glial cells exhibit unique signatures in the CSPα KO brain. Significantly, all neuronal classes in CSPα KO brains show strong signatures of repression in synaptic pathways, while up-regulating autophagy-related genes. Through visualization of synapses and autophagosomes by electron microscopy, we confirmed these alterations especially in inhibitory synapses. Glial responses varied by cell type, with microglia exhibiting activation. By imputing cell-cell interactions, we found that neuron-glia interactions were specifically increased in CSPα KO mice. This was mediated by synaptogenic adhesion molecules, with the classical Neurexin1-Neuroligin 1 pair being the most prominent, suggesting that communication of glial cells with neurons is strengthened in CSPα KO mice to preserve synapse maintenance. Together, this study provides a rich dataset of transcriptional changes in the CSPα KO cortex and reveals insights into synapse maintenance and neurodegeneration.


Subject(s)
HSP40 Heat-Shock Proteins , Membrane Proteins , Mice, Knockout , Neurons , Synapses , Transcriptome , Animals , Synapses/metabolism , Mice , HSP40 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , Neurons/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Neuroglia/metabolism
2.
Neurochem Res ; 49(2): 379-387, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37847330

ABSTRACT

Oligomeric aggregates of the amyloid-beta (Aß) peptide have been implicated as the toxic species for Alzheimer's disease by contributing to oxidative cytotoxicity and physical disruption in cell membranes in the brain. Recent evidence points to the ability of the catecholamine neurotransmitter dopamine in the presence of copper ions to both stabilize oligomers and decrease the toxic effects of these oligomers. Based on these results, physical characterization of aggregates and subsequent cell studies with a neuroblastoma line were performed that show both dopamine and the related neurotransmitter, norepinephrine, can stabilize oligomers and decrease toxicity of Aß aggregates without copper present. To investigate this reduction of toxicity, structural characterization of oligomers in the presence of neurotransmitters was compared to aggregates formed with Aß alone. Gel electrophoresis and transmission electron microscopy show higher levels of oligomers in the presence of dopamine and norepinephrine, yet the oligomer structure is largely amorphous. Aß aggregated alone forms the predicted highly organized fibrillar species, with increased levels of dityrosine covalent linkages, which are largely absent in the presence of the neurotransmitters. A proposed mechanism for the observed decrease in cell death by Aß in the presence of dopamine and norepinephrine suggests the neurotransmitters both block the formation of organized oligomer structures and dityrosine stabilizing linkages while also behaving as antioxidants, providing a dual mechanism for increased cell viability.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Amyloid beta-Peptides/metabolism , Copper/metabolism , Dopamine , Alzheimer Disease/metabolism , Catechols , Norepinephrine , Neurotransmitter Agents , Peptide Fragments/metabolism , Amyloid/toxicity
3.
bioRxiv ; 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37873460

ABSTRACT

Synapse maintenance is essential for generating functional circuitry and decrement in this process is a hallmark of neurodegenerative disease. While we are beginning to understand the basis of synapse formation, much less is known about synapse maintenance in vivo. Cysteine string protein α (CSPα), encoded by the Dnajc5 gene, is a synaptic vesicle chaperone that is necessary for synapse maintenance and linked to neurodegeneration. To investigate the transcriptional changes associated with synapse maintenance, we performed single nucleus transcriptomics on the cortex of young CSPα knockout (KO) mice and littermate controls. Through differential expression and gene ontology analysis, we observed that both neurons and glial cells exhibit unique signatures in CSPα KO brain. Significantly all neurons in CSPα KO brains show strong signatures of repression in synaptic pathways, while upregulating autophagy related genes. Through visualization of synapses and autophagosomes by electron microscopy, we confirmed these alterations especially in inhibitory synapses. By imputing cell-cell interactions, we found that neuron-glia interactions were specifically increased in CSPα KO mice. This was mediated by synaptogenic adhesion molecules, including the classical Neurexin1-Neuroligin 1 pair, suggesting that communication of glial cells with neurons is strengthened in CSPα KO mice in an attempt to achieve synapse maintenance. Together, this study reveals unique cellular and molecular transcriptional changes in CSPα KO cortex and provides new insights into synapse maintenance and neurodegeneration.

4.
Sci Transl Med ; 14(647): eabi8593, 2022 06.
Article in English | MEDLINE | ID: mdl-35648810

ABSTRACT

Microglia-mediated synaptic loss contributes to the development of cognitive impairments in Alzheimer's disease (AD). However, the basis for this immune-mediated attack on synapses remains to be elucidated. Treatment with the metabotropic glutamate receptor 5 (mGluR5) silent allosteric modulator (SAM), BMS-984923, prevents ß-amyloid oligomer-induced aberrant synaptic signaling while preserving physiological glutamate response. Here, we show that oral BMS-984923 effectively occupies brain mGluR5 sites visualized by [18F]FPEB positron emission tomography (PET) at doses shown to be safe in rodents and nonhuman primates. In aged mouse models of AD (APPswe/PS1ΔE9 overexpressing transgenic and AppNL-G-F/hMapt double knock-in), SAM treatment fully restored synaptic density as measured by [18F]SynVesT-1 PET for SV2A and by histology, and the therapeutic benefit persisted after drug washout. Phospho-TAU accumulation in double knock-in mice was also reduced by SAM treatment. Single-nuclei transcriptomics demonstrated that SAM treatment in both models normalized expression patterns to a far greater extent in neurons than glia. Last, treatment prevented synaptic localization of the complement component C1Q and synaptic engulfment in AD mice. Thus, selective modulation of mGluR5 reversed neuronal gene expression changes to protect synapses from damage by microglial mediators in rodents.


Subject(s)
Alzheimer Disease , Receptor, Metabotropic Glutamate 5 , Alzheimer Disease/pathology , Animals , Complement C1q/metabolism , Complement C1q/therapeutic use , Disease Models, Animal , Mice , Receptor, Metabotropic Glutamate 5/metabolism , Receptor, Metabotropic Glutamate 5/therapeutic use , Synapses/metabolism
5.
Neuron ; 105(6): 1027-1035.e2, 2020 03 18.
Article in English | MEDLINE | ID: mdl-31983538

ABSTRACT

The interplay between viral infection and Alzheimer's disease (AD) has long been an area of interest, but proving causality has been elusive. Several recent studies have renewed the debate concerning the role of herpesviruses, and human herpesvirus 6 (HHV-6) in particular, in AD. We screened for HHV-6 detection across three independent AD brain repositories using (1) RNA sequencing (RNA-seq) datasets and (2) DNA samples extracted from AD and non-AD control brains. The RNA-seq data were screened for pathogens against taxon references from over 25,000 microbes, including 118 human viruses, whereas DNA samples were probed for PCR reactivity to HHV-6A and HHV-6B. HHV-6 demonstrated little specificity to AD brains over controls by either method, whereas other viruses, such as Epstein-Barr virus (EBV) and cytomegalovirus (CMV), were detected at comparable levels. These direct methods of viral detection do not suggest an association between HHV-6 and AD.


Subject(s)
Alzheimer Disease/virology , Brain/virology , Herpesvirus 6, Human/isolation & purification , Case-Control Studies , Cohort Studies , Female , Herpesvirus 6, Human/genetics , Humans , Male , Sequence Analysis, DNA/statistics & numerical data , Sequence Analysis, RNA/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...