Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 133(21)2023 11 01.
Article in English | MEDLINE | ID: mdl-37676735

ABSTRACT

Even when successfully induced, immunological tolerance to solid organs remains vulnerable to inflammatory insults, which can trigger rejection. In a mouse model of cardiac allograft tolerance in which infection with Listeria monocytogenes (Lm) precipitates rejection of previously accepted grafts, we showed that recipient CD4+ TCR75 cells reactive to a donor MHC class I-derived peptide become hypofunctional if the allograft is accepted for more than 3 weeks. Paradoxically, infection-induced transplant rejection was not associated with transcriptional or functional reinvigoration of TCR75 cells. We hypothesized that there is heterogeneity in the level of dysfunction of different allospecific T cells, depending on duration of their cognate antigen expression. Unlike CD4+ TCR75 cells, CD4+ TEa cells specific for a peptide derived from donor MHC class II, an alloantigen whose expression declines after transplantation but remains inducible in settings of inflammation, retained function in tolerant mice and expanded during Lm-induced rejection. Repeated injections of alloantigens drove hypofunction in TEa cells and rendered grafts resistant to Lm-dependent rejection. Our results uncover a functional heterogeneity in allospecific T cells of distinct specificities after tolerance induction and reveal a strategy to defunctionalize a greater repertoire of allospecific T cells, thereby mitigating a critical vulnerability of tolerance.


Subject(s)
CD4-Positive T-Lymphocytes , Heart Transplantation , Mice , Animals , Transplantation, Homologous , Transplantation Tolerance , Graft Rejection/genetics , Histocompatibility Antigens Class I , Peptides , Isoantigens
3.
Proc Natl Acad Sci U S A ; 119(40): e2205062119, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36161903

ABSTRACT

Limiting CD4+ T cell responses is important to prevent solid organ transplant rejection. In a mouse model of costimulation blockade-dependent cardiac allograft tolerance, we previously reported that alloreactive CD4+ conventional T cells (Tconvs) develop dysfunction, losing proliferative capacity. In parallel, induction of transplantation tolerance is dependent on the presence of regulatory T cells (Tregs). Whether susceptibility of CD4+ Tconvs to Treg suppression is modulated during tolerance induction is unknown. We found that alloreactive Tconvs from transplant tolerant mice had augmented sensitivity to Treg suppression when compared with memory T cells from rejector mice and expressed a transcriptional profile distinct from these memory T cells, including down-regulated expression of the transcription factor Special AT-rich sequence-binding protein 1 (Satb1). Mechanistically, Satb1 deficiency in CD4+ T cells limited their expression of CD25 and IL-2, and addition of Tregs, which express higher levels of CD25 than Satb1-deficient Tconvs and successfully competed for IL-2, resulted in greater suppression of Satb1-deficient than wild-type Tconvs in vitro. In vivo, Satb1-deficient Tconvs were more susceptible to Treg suppression, resulting in significantly prolonged skin allograft survival. Overall, our study reveals that transplantation tolerance is associated with Tconvs' susceptibility to Treg suppression, via modulated expression of Tconv-intrinsic Satb1. Targeting Satb1 in the context of Treg-sparing immunosuppressive therapies might be exploited to improve transplant outcomes.


Subject(s)
Graft Survival , Matrix Attachment Region Binding Proteins , T-Lymphocytes, Regulatory , Transcription Factors , Transplantation Tolerance , Animals , Graft Survival/genetics , Graft Survival/immunology , Immunologic Memory/genetics , Interleukin-2/metabolism , Matrix Attachment Region Binding Proteins/genetics , Matrix Attachment Region Binding Proteins/metabolism , Mice , Mice, Inbred C57BL , T-Lymphocytes, Regulatory/immunology , Transcription Factors/genetics , Transcription Factors/metabolism , Transplantation Tolerance/genetics , Transplantation Tolerance/immunology
4.
Cell Immunol ; 351: 104068, 2020 05.
Article in English | MEDLINE | ID: mdl-32139072

ABSTRACT

Cellular metabolism is central to T cell function and proliferation, with most of the research to date focusing on cancer and autoimmunity. Cellular metabolism is associated with a host of physiological phenomena, from epigenetic changes, to cellular function and fate. For the purpose of this review, we will discuss the metabolism of T cells relating to their differentiation and function. We will cover a variety of metabolic processes, ranging from glycolysis to amino acid metabolism. Understanding how T cell metabolism informs T cell function may be useful to understand alloimmune responses and design novel therapies to improve graft outcome.


Subject(s)
Organ Transplantation , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transplantation Tolerance/immunology , Animals , Cell Differentiation/immunology , Graft Rejection/immunology , Graft Survival/immunology , Humans
5.
J Immunol ; 201(7): 1907-1917, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30127089

ABSTRACT

In both NOD mice and humans, the development of type 1 diabetes (T1D) is dependent in part on autoreactive CD8+ T cells recognizing pancreatic ß cell peptides presented by often quite common MHC class I variants. Studies in NOD mice previously revealed that the common H2-Kd and/or H2-Db class I molecules expressed by this strain aberrantly lose the ability to mediate the thymic deletion of pathogenic CD8+ T cell responses through interactions with T1D susceptibility genes outside the MHC. A gene(s) mapping to proximal chromosome 7 was previously shown to be an important contributor to the failure of the common class I molecules expressed by NOD mice to mediate the normal thymic negative selection of diabetogenic CD8+ T cells. Using an inducible model of thymic negative selection and mRNA transcript analyses, we initially identified an elevated Nfkbid expression variant as a likely NOD-proximal chromosome 7 region gene contributing to impaired thymic deletion of diabetogenic CD8+ T cells. CRISPR/Cas9-mediated genetic attenuation of Nfkbid expression in NOD mice resulted in improved negative selection of autoreactive diabetogenic AI4 and NY8.3 CD8+ T cells. These results indicated that allelic variants of Nfkbid contribute to the efficiency of intrathymic deletion of diabetogenic CD8+ T cells. However, although enhancing thymic deletion of pathogenic CD8+ T cells, ablating Nfkbid expression surprisingly accelerated T1D onset that was associated with numeric decreases in both regulatory T and B lymphocytes in NOD mice.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Chromosomes, Human, Pair 7/genetics , Diabetes Mellitus, Type 1/immunology , I-kappa B Proteins/genetics , Thymus Gland/immunology , Alleles , Animals , Autoantigens/immunology , Cell Differentiation , Cells, Cultured , Clonal Deletion , Disease Models, Animal , Disease Susceptibility , Humans , I-kappa B Proteins/metabolism , Mice , Mice, Inbred NOD , Polymorphism, Genetic
6.
Diabetes ; 67(5): 923-935, 2018 05.
Article in English | MEDLINE | ID: mdl-29472249

ABSTRACT

Improved mouse models for type 1 diabetes (T1D) therapy development are needed. T1D susceptibility is restored to normally resistant NOD.ß2m-/- mice transgenically expressing human disease-associated HLA-A*02:01 or HLA-B*39:06 class I molecules in place of their murine counterparts. T1D is dependent on pathogenic CD8+ T-cell responses mediated by these human class I variants. NOD.ß2m-/--A2.1 mice were previously used to identify ß-cell autoantigens presented by this human class I variant to pathogenic CD8+ T cells and for testing therapies to attenuate such effectors. However, NOD.ß2m-/- mice also lack nonclassical MHC I family members, including FcRn, required for antigen presentation, and maintenance of serum IgG and albumin, precluding therapies dependent on these molecules. Hence, we used CRISPR/Cas9 to directly ablate the NOD H2-Kd and H2-Db classical class I variants either individually or in tandem (cMHCI-/-). Ablation of the H2-Ag7 class II variant in the latter stock created NOD mice totally lacking in classical murine MHC expression (cMHCI/II-/-). NOD-cMHCI-/- mice retained nonclassical MHC I molecule expression and FcRn activity. Transgenic expression of HLA-A2 or -B39 restored pathogenic CD8+ T-cell development and T1D susceptibility to NOD-cMHCI-/- mice. These next-generation HLA-humanized NOD models may provide improved platforms for T1D therapy development.


Subject(s)
Diabetes Mellitus, Type 1/genetics , Disease Models, Animal , HLA-A2 Antigen/genetics , HLA-B Antigens/genetics , Mice , beta 2-Microglobulin/genetics , Animals , CRISPR-Cas Systems , Diabetes Mellitus, Type 1/therapy , Histocompatibility Antigens Class I/genetics , Humans , Mice, Inbred NOD , Mice, Knockout , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...