Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep Med ; 3(2): 100521, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35243421

ABSTRACT

Tailored skin microbiome modulation approaches with probiotics are highly challenging. Here, we show that lactobacilli are underestimated members of the skin microbiota. We select specific strains of nomadic lactobacilli for their functional applicability on the skin and capacity to inhibit growth and inflammation by skin pathobionts. The strains are formulated as microcapsules for topical formulations and tested in patients with mild-to-moderate acne. The selected lactobacilli are able to reduce inflammatory lesions in a pilot and placebo-controlled study. Daily application for 8 weeks is associated with an in vivo temporary modulation of the microbiome, including a reduction in relative abundance of staphylococci and Cutibacterium acnes, and an increase in lactobacilli. The reduction in inflammatory lesions is still apparent 4 weeks after the topical application of the lactobacilli ended, indicating a possible additional immunomodulatory effect. This study shows that carefully selected and formulated lactobacilli are a viable therapeutic option for common acne lesions.


Subject(s)
Acne Vulgaris , Lactobacillus , Acne Vulgaris/therapy , Humans , Inflammation , Propionibacterium acnes , Skin
2.
Cell Rep ; 31(8): 107674, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32460009

ABSTRACT

Although an increasing number of beneficial microbiome members are characterized for the human gut and vagina, beneficial microbes are underexplored for the human upper respiratory tract (URT). In this study, we demonstrate that taxa from the beneficial Lactobacillus genus complex are more prevalent in the healthy URT than in patients with chronic rhinosinusitis (CRS). Several URT-specific isolates are cultured, characterized, and further explored for their genetic and functional properties related to adaptation to the URT. Catalase genes are found in the identified lactobacilli, which is a unique feature within this mostly facultative anaerobic genus. Moreover, one of our isolated strains, Lactobacillus casei AMBR2, contains fimbriae that enable strong adherence to URT epithelium, inhibit the growth and virulence of several URT pathogens, and successfully colonize nasal epithelium of healthy volunteers. This study thus demonstrates that specific lactobacilli are adapted to the URT and could have a beneficial keystone function in this habitat.


Subject(s)
Lactobacillus/pathogenicity , Nose/microbiology , Female , Humans , Male
3.
Microb Biotechnol ; 10(6): 1753-1763, 2017 11.
Article in English | MEDLINE | ID: mdl-28772020

ABSTRACT

A number of clinical studies have shown protective effects of lactobacilli against Candida species in the gastrointestinal tract, the urogenital tract and the oral cavity, while others did not show clear effects. Evidence on the mode of action of lactobacilli against Candida is also still lacking. In this study, the anti-Candida activity of the model probiotic strain Lactobacillus rhamnosus GG was explored in different assays to determine molecular interactions. We found that L. rhamnosus GG was able to interfere with Candida growth, morphogenesis and adhesion. These three aspects of Candida's physiology are all crucial to its opportunistic pathogenesis. In follow-up assays, we compared the activity of L. rhamnosus GG wild-type with its exopolysaccharide (EPS)-deficient mutant and purified EPS to evaluate the involvement of this outer carbohydrate layer. Our data demonstrate that purified EPS can both interfere with hyphal formation and adhesion to epithelial cells, which indicates that EPS is part of a combined molecular mechanism underlying the antihyphal and anti-adhesion mechanisms of L. rhamnosus GG.


Subject(s)
Candida/drug effects , Candida/growth & development , Lacticaseibacillus rhamnosus/metabolism , Proteoglycans/pharmacology , Candida/genetics , Candida/physiology , Hyphae/drug effects , Hyphae/growth & development , Lacticaseibacillus rhamnosus/chemistry , Lacticaseibacillus rhamnosus/genetics , Proteoglycans/metabolism
4.
mSystems ; 2(4)2017.
Article in English | MEDLINE | ID: mdl-28845461

ABSTRACT

Although the genotypic and phenotypic properties of the Lactobacillus casei group have been studied extensively, the taxonomic structure has been the subject of debate for a long time. Here, we performed a large-scale comparative analysis by using 183 publicly available genomes supplemented with a Lactobacillus strain isolated from the human upper respiratory tract. On the basis of this analysis, we identified inconsistencies in the taxonomy and reclassified all of the genomes according to their most closely related type strains. This led to the identification of a catalase-encoding gene in all 10 L. casei sensu stricto strains, making it the first described catalase-positive species in the Lactobacillus genus. Moreover, we found that 6 of 10 L. casei genomes contained a SecA2/SecY2 gene cluster with two putative glycosylated surface adhesin proteins. Altogether, our results highlight current inconsistencies in the taxonomy of the L. casei group and reveal new clade-associated functional features. IMPORTANCE The closely related species of the Lactobacillus casei group are extensively studied because of their applications in food fermentations and as probiotics. Our results show that many strains in this group are incorrectly classified and that reclassifying them to their most closely related species type strain improves the functional predictive power of their taxonomy. In addition, our findings may spark increased interest in the L. casei species. We find that after reclassification, only 10 genomes remain classified as L. casei. These strains show some interesting properties. First, they all appear to be catalase positive. This suggests that they have increased oxidative stress resistance. Second, we isolated an L. casei strain from the human upper respiratory tract and discovered that it and multiple other L. casei strains harbor one or even two large, glycosylated putative surface adhesins. This might inspire further exploration of this species as a potential probiotic organism.

5.
Front Microbiol ; 7: 279, 2016.
Article in English | MEDLINE | ID: mdl-27014204

ABSTRACT

Pseudomonas syringae pv. porri, the causative agent of bacterial blight in leek (Allium porrum), is increasingly frequent causing problems in leek cultivation. Because of the current lack of control measures, novel bacteriophages were isolated to control this pathogen using phage therapy. Five novel phages were isolated from infected fields in Flanders (vB_PsyM_KIL1, vB_PsyM_KIL2, vB_PsyM_KIL3, vB_PsyM_KIL4, and vB_PsyM_KIL5), and were complemented with one selected host range mutant phage (vB_PsyM_KIL3b). Genome analysis of the phages revealed genome sizes between 90 and 94 kb and an average GC-content of 44.8%. Phylogenomic networking classified them into a novel clade, named the "KIL-like viruses," related to the Felixounalikevirus genus, together with phage phiPsa374 from P. syringae pv. actinidiae. In vitro characterization demonstrated the stability and lytic potential of these phages. Host range analysis confirmed heterogeneity within P. syringae pv. porri, leading to the development of a phage cocktail with a range that covers the entire set of 41 strains tested. Specific bio-assays demonstrated the in planta efficacy of phages vB_PsyM_KIL1, vB_PsyM_KIL2, vB_PsyM_KIL3, and vB_PsyM_KIL3b. In addition, two parallel field trial experiments on three locations using a phage cocktail of the six phages showed variable results. In one trial, symptom development was attenuated. These data suggest some potential for phage therapy in controlling bacterial blight of leek, pending optimization of formulation and application methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...