Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J For ; 117(6): 560-578, 2019.
Article in English | MEDLINE | ID: mdl-32153304

ABSTRACT

As the demand for forest products and carbon storage in standing timbers increases, intensive planting of forest resources is expected to increase. With the increased use of plantation practices, it is important to understand the influence that forest plot characteristics have on the likelihood of where these practices are occurring. Depending on the goals of a policy or program, increasing forest planting could be a desirable outcome or something to avoid. This study estimates a spatially explicit logistical regression function to assess the likelihood that forest plots will be planted based on physical, climate, and economic factors. The empirical results are used to project the potential spatial distribution of forest planting, at the intensive and extensive land-use margins, across illustrative future scenarios. Results from this analysis offer insight into the factors that have driven forest planting in the United States historically and the potential distribution of new forest planting in the coming decades under policy or market scenarios that incentivize improved forest productivity or certain ecosystem services provided by intensively managed systems (e.g., carbon sequestration).

2.
Int J Health Geogr ; 17(1): 12, 2018 05 09.
Article in English | MEDLINE | ID: mdl-29743081

ABSTRACT

BACKGROUND: Conducting surveys in low- and middle-income countries is often challenging because many areas lack a complete sampling frame, have outdated census information, or have limited data available for designing and selecting a representative sample. Geosampling is a probability-based, gridded population sampling method that addresses some of these issues by using geographic information system (GIS) tools to create logistically manageable area units for sampling. GIS grid cells are overlaid to partition a country's existing administrative boundaries into area units that vary in size from 50 m × 50 m to 150 m × 150 m. To avoid sending interviewers to unoccupied areas, researchers manually classify grid cells as "residential" or "nonresidential" through visual inspection of aerial images. "Nonresidential" units are then excluded from sampling and data collection. This process of manually classifying sampling units has drawbacks since it is labor intensive, prone to human error, and creates the need for simplifying assumptions during calculation of design-based sampling weights. In this paper, we discuss the development of a deep learning classification model to predict whether aerial images are residential or nonresidential, thus reducing manual labor and eliminating the need for simplifying assumptions. RESULTS: On our test sets, the model performs comparable to a human-level baseline in both Nigeria (94.5% accuracy) and Guatemala (96.4% accuracy), and outperforms baseline machine learning models trained on crowdsourced or remote-sensed geospatial features. Additionally, our findings suggest that this approach can work well in new areas with relatively modest amounts of training data. CONCLUSIONS: Gridded population sampling methods like geosampling are becoming increasingly popular in countries with outdated or inaccurate census data because of their timeliness, flexibility, and cost. Using deep learning models directly on satellite images, we provide a novel method for sample frame construction that identifies residential gridded aerial units. In cases where manual classification of satellite images is used to (1) correct for errors in gridded population data sets or (2) classify grids where population estimates are unavailable, this methodology can help reduce annotation burden with comparable quality to human analysts.


Subject(s)
Demography/classification , Developing Countries/classification , Neural Networks, Computer , Residence Characteristics/classification , Satellite Imagery/classification , Data Collection/classification , Data Collection/methods , Demography/methods , Guatemala/epidemiology , Humans , Nigeria/epidemiology , Satellite Imagery/methods
3.
BMC Public Health ; 15: 447, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25928152

ABSTRACT

BACKGROUND: Measles cases continue to occur among susceptible individuals despite the elimination of endemic measles transmission in the United States. Clustering of disease susceptibility can threaten herd immunity and impact the likelihood of disease outbreaks in a highly vaccinated population. Previous studies have examined the role of contact tracing to control infectious diseases among clustered populations, but have not explicitly modeled the public health response using an agent-based model. METHODS: We developed an agent-based simulation model of measles transmission using the Framework for Reconstructing Epidemiological Dynamics (FRED) and the Synthetic Population Database maintained by RTI International. The simulation of measles transmission was based on interactions among individuals in different places: households, schools, daycares, workplaces, and neighborhoods. The model simulated different levels of immunity clustering, vaccination coverage, and contact investigations with delays caused by individuals' behaviors and/or the delay in a health department's response. We examined the effects of these characteristics on the probability of uncontrolled measles outbreaks and the outbreak size in 365 days after the introduction of one index case into a synthetic population. RESULTS: We found that large measles outbreaks can be prevented with contact investigations and moderate contact rates by having (1) a very high vaccination coverage (≥ 95%) with a moderate to low level of immunity clustering (≤ 0.5) for individuals aged less than or equal to 18 years, or (2) a moderate vaccination coverage (85% or 90%) with no immunity clustering for individuals (≤ 18 years of age), a short intervention delay, and a high probability that a contact can be traced. Without contact investigations, measles outbreaks may be prevented by the highest vaccination coverage with no immunity clustering for individuals (≤ 18 years of age) with moderate contact rates; but for the highest contact rates, even the highest coverage with no immunity clustering for individuals (≤ 18 years of age) cannot completely prevent measles outbreaks. CONCLUSIONS: The simulation results demonstrated the importance of vaccination coverage, clustering of immunity, and contact investigations in preventing uncontrolled measles outbreaks.


Subject(s)
Disease Outbreaks/prevention & control , Immunization Schedule , Measles Vaccine/administration & dosage , Measles/prevention & control , Adolescent , Adult , California/epidemiology , Child , Disease Susceptibility , Epidemics/prevention & control , Female , Humans , Male , Middle Aged , Models, Theoretical , Public Health , Socioeconomic Factors , United States , Young Adult
4.
Proc Natl Acad Sci U S A ; 107(3): 1041-6, 2010 Jan 19.
Article in English | MEDLINE | ID: mdl-19955428

ABSTRACT

Spatial heterogeneities and spatial separation of hosts are often seen as key factors when developing accurate predictive models of the spread of pathogens. The question we address in this paper is how coarse the resolution of the spatial data can be for a model to be a useful tool for informing control policies. We examine this problem using the specific case of foot-and-mouth disease spreading between farms using the formulation developed during the 2001 epidemic in the United Kingdom. We show that, if our model is carefully parameterized to match epidemic behavior, then using aggregate county-scale data from the United States is sufficient to closely determine optimal control measures (specifically ring culling). This result also holds when the approach is extended to theoretical distributions of farms where the spatial clustering can be manipulated to extremes. We have therefore shown that, although spatial structure can be critically important in allowing us to predict the emergent population-scale behavior from a knowledge of the individual-level dynamics, for this specific applied question, such structure is mostly subsumed in the parameterization allowing us to make policy predictions in the absence of high-quality spatial information. We believe that this approach will be of considerable benefit across a range of disciplines where data are only available at intermediate spatial scales.


Subject(s)
Communicable Disease Control , Disease Transmission, Infectious , Cluster Analysis
5.
Methods Rep RTI Press ; 2009(10): 905, 2009 May 01.
Article in English | MEDLINE | ID: mdl-20505787

ABSTRACT

Agent-based models simulate large-scale social systems. They assign behaviors and activities to "agents" (individuals) within the population being modeled and then allow the agents to interact with the environment and each other in complex simulations. Agent-based models are frequently used to simulate infectious disease outbreaks, among other uses.RTI used and extended an iterative proportional fitting method to generate a synthesized, geospatially explicit, human agent database that represents the US population in the 50 states and the District of Columbia in the year 2000. Each agent is assigned to a household; other agents make up the household occupants.For this database, RTI developed the methods for generating synthesized households and personsassigning agents to schools and workplaces so that complex interactions among agents as they go about their daily activities can be taken into accountgenerating synthesized human agents who occupy group quarters (military bases, college dormitories, prisons, nursing homes).In this report, we describe both the methods used to generate the synthesized population database and the final data structure and data content of the database. This information will provide researchers with the information they need to use the database in developing agent-based models.Portions of the synthesized agent database are available to any user upon request. RTI will extract a portion (a county, region, or state) of the database for users who wish to use this database in their own agent-based models.

6.
Int J Health Geogr ; 7: 18, 2008 Apr 30.
Article in English | MEDLINE | ID: mdl-18447932

ABSTRACT

BACKGROUND: Recent advances in GIS technology and remote sensing have provided new opportunities to collect ecologic data on agricultural pesticide exposure. Many pesticide studies have used historical or records-based data on crops and their associated pesticide applications to estimate exposure by measuring residential proximity to agricultural fields. Very few of these studies collected environmental and biological samples from study participants. One of the reasons for this is the cost of identifying participants who reside near study fields and analyzing samples obtained from them. In this paper, we present a cost-effective, GIS-based method for crop field selection and household recruitment in a prospective pesticide exposure study in a remote location. For the most part, our multi-phased approach was carried out in a research facility, but involved two brief episodes of fieldwork for ground truthing purposes. This method was developed for a larger study designed to examine the validity of indirect pesticide exposure estimates by comparing measured exposures in household dust, water and urine with records-based estimates that use crop location, residential proximity and pesticide application data. The study focused on the pesticide atrazine, a broadleaf herbicide used in corn production and one of the most widely-used pesticides in the U.S. RESULTS: We successfully used a combination of remotely-sensed data, GIS-based methods and fieldwork to select study fields and recruit participants in Illinois, a state with high corn production and heavy atrazine use. Our several-step process consisted of the identification of potential study fields and residential areas using aerial photography; verification of crop patterns and land use via site visits; development of a GIS-based algorithm to define recruitment areas around crop fields; acquisition of geocoded household-level data within each recruitment area from a commercial vendor; and confirmation of final participant household locations via ground truthing. The use of these procedures resulted in a sufficient sample of participants from 14 recruitment areas in seven Illinois counties. CONCLUSION: One of the challenges in pesticide research is the identification and recruitment of study participants, which is time consuming and costly, especially when the study site is in a remote location. We have demonstrated how GIS-based processes can be used to recruit participants, increase efficiency and enhance accuracy. The method that we used ultimately made it possible to collect biological samples from a specific demographic group within strictly defined exposure areas, with little advance knowledge of the location or population.


Subject(s)
Atrazine , Crops, Agricultural , Environmental Exposure/analysis , Geographic Information Systems , Patient Selection , Pesticides , Zea mays , Family Characteristics , Humans , Illinois , Maps as Topic , Photography , Prospective Studies , Sampling Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...