Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Heredity (Edinb) ; 114(6): 584-92, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25585920

ABSTRACT

Asexual reproduction via thelytokous parthenogenesis is widespread in the Hymenoptera, but its genetic underpinnings have been described only twice. In the wasp Lysiphlebus fabarum and the Cape honey bee Apis mellifera capensis the origin of thelytoky have each been traced to a single recessive locus. In the Cape honey bee it has been argued that thelytoky (th) controls the thelytoky phenotype and that a deletion of 9 bp in the flanking intron downstream of exon 5 (tae) of the gemini gene switches parthenogenesis from arrhenotoky to thelytoky. To further explore the mode of inheritance of thelytoky, we generated reciprocal backcrosses between thelytokous A. m. capensis and the arrhenotokous A. m. scutellata. Ten genetic markers were used to identify 108 thelytokously produced offspring and 225 arrhenotokously produced offspring from 14 colonies. Patterns of appearance of thelytokous parthenogenesis were inconsistent with a single locus, either th or tae, controlling thelytoky. We further show that the 9 bp deletion is present in the arrhenotokous A. m. scutellata population in South Africa, in A. m. intermissa in Morocco and in Africanized bees from Brazil and Texas, USA, where thelytoky has not been reported. Thus the 9 p deletion cannot be the cause of thelytoky. Further, we found two novel tae alleles. One contains the previously described 9 bp deletion and an additional deletion of 7 bp nearby. The second carries a single base insertion with respect to the wild type. Our data are consistent with the putative th locus increasing reproductive capacity.


Subject(s)
Bees/genetics , Inheritance Patterns , Parthenogenesis/genetics , Alleles , Animals , Base Sequence , Crosses, Genetic , Genes, Insect , Genetic Markers , Genetics, Population , Genotype , Introns , Molecular Sequence Data , Sequence Analysis, DNA , Sequence Deletion
2.
Heredity (Edinb) ; 100(1): 13-8, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17848972

ABSTRACT

Hybrid zones are found wherever two populations distinguishable on the basis of heritable characters overlap spatially and temporally and hybridization occurs. If hybrids have lower fitness than the parental types a tension zone may emerge, in which there is a barrier to gene flow between the two parental populations. Here we discuss a hybrid zone between two honeybee subspecies, Apis mellifera capensis and A. m. scutellata and argue that this zone is an example of a tension zone. This tension zone is particularly interesting because A. m. capensis can be a lethal social parasite of A. m. scutellata. However, despite its parasitic potential, A. m. capensis appears to be unable to increase its natural range unassisted. We propose three interlinked mechanisms that could maintain the South African honeybee hybrid zone: (1) low fitness of intercrossed and genetically mixed colonies arising from inadequate regulation of worker reproduction; (2) higher reproductive success of A. m. scutellata via both high dispersal rates into the hybrid zone and increased competitiveness of males, countered by (3) the parasitic nature of A. m. capensis.


Subject(s)
Bees/physiology , Animals , Bees/genetics , Chimera , Reproduction , South Africa
3.
Appl Environ Microbiol ; 65(5): 2243-5, 1999 May.
Article in English | MEDLINE | ID: mdl-10224028

ABSTRACT

American foulbrood is a disease of larval honeybees (Apis mellifera) caused by the bacterium Paenibacillus larvae. Over the years attempts have been made to develop a selective medium for the detection of P. larvae spores from honey samples. The most successful of these is a semiselective medium containing nalidixic acid and pipermedic acid. Although this medium allows the growth of P. larvae and prevents the growth of most other bacterial species, the false-positive colonies that grow on it prevent the rapid confirmation of the presence of P. larvae. Here we describe a PCR detection method which can be used on the colonies that grow on this semiselective medium and thereby allows the rapid confirmation of the presence of P. larvae. The PCR primers were designed on the basis of the 16S rRNA gene of P. larvae and selectively amplify a 973-bp amplicon. The PCR amplicon was confirmed as originating from P. larvae by sequencing in both directions. Detection was specific for P. larvae, and the primers did not hybridize with DNA from closely related bacterial species.


Subject(s)
Bacillus/genetics , Bacillus/isolation & purification , Polymerase Chain Reaction/methods , Animals , Bacillus/pathogenicity , Base Sequence , Bees/microbiology , DNA Primers/genetics , DNA, Bacterial/genetics , Molecular Sequence Data , Species Specificity
4.
Appl Environ Microbiol ; 64(5): 1983-5, 1998 May.
Article in English | MEDLINE | ID: mdl-9572987

ABSTRACT

Melissococcus pluton is the causative agent of European foulbrood, a disease of honeybee larvae. This bacterium is particularly difficult to isolate because of its stringent growth requirements and competition from other bacteria. PCR was used selectively to amplify specific rRNA gene sequences of M. pluton from pure culture, from crude cell lysates, and directly from infected bee larvae. The PCR primers were designed from M. pluton 16S rRNA sequence data. The PCR products were visualized by agarose gel electrophoresis and confirmed as originating from M. pluton by sequencing in both directions. Detection was highly specific, and the probes did not hybridize with DNA from other bacterial species tested. This method enabled the rapid and specific detection and identification of M. pluton from pure cultures and infected bee larvae.


Subject(s)
Bacillus/isolation & purification , Bees/microbiology , Polymerase Chain Reaction/methods , Animals , Base Sequence , Larva/microbiology , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL