Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nature ; 619(7971): 724-732, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37438522

ABSTRACT

The presence and distribution of preserved organic matter on the surface of Mars can provide key information about the Martian carbon cycle and the potential of the planet to host life throughout its history. Several types of organic molecules have been previously detected in Martian meteorites1 and at Gale crater, Mars2-4. Evaluating the diversity and detectability of organic matter elsewhere on Mars is important for understanding the extent and diversity of Martian surface processes and the potential availability of carbon sources1,5,6. Here we report the detection of Raman and fluorescence spectra consistent with several species of aromatic organic molecules in the Máaz and Séítah formations within the Crater Floor sequences of Jezero crater, Mars. We report specific fluorescence-mineral associations consistent with many classes of organic molecules occurring in different spatial patterns within these compositionally distinct formations, potentially indicating different fates of carbon across environments. Our findings suggest there may be a diversity of aromatic molecules prevalent on the Martian surface, and these materials persist despite exposure to surface conditions. These potential organic molecules are largely found within minerals linked to aqueous processes, indicating that these processes may have had a key role in organic synthesis, transport or preservation.

2.
Sci Adv ; 8(47): eabp9084, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36417516

ABSTRACT

Collocated crystal sizes and mineral identities are critical for interpreting textural relationships in rocks and testing geological hypotheses, but it has been previously impossible to unambiguously constrain these properties using in situ instruments on Mars rovers. Here, we demonstrate that diffracted and fluoresced x-rays detected by the PIXL instrument (an x-ray fluorescence microscope on the Perseverance rover) provide information about the presence or absence of coherent crystalline domains in various minerals. X-ray analysis and multispectral imaging of rocks from the Séítah formation on the floor of Jezero crater shows that they were emplaced as coarsely crystalline igneous phases. Olivine grains were then partially dissolved and filled by finely crystalline or amorphous secondary silicate, carbonate, sulfate, and chloride/oxychlorine minerals. These results support the hypothesis that Séítah formation rocks represent olivine cumulates altered by fluids far from chemical equilibrium at low water-rock ratios.

3.
Nature ; 565(7737): E1, 2019 01.
Article in English | MEDLINE | ID: mdl-30498252

ABSTRACT

In Extended Data Fig. 1 of this Letter, the map showed the field-work location incorrectly; this figure has been corrected online.

4.
Geobiology ; 17(2): 151-160, 2019 03.
Article in English | MEDLINE | ID: mdl-30450841

ABSTRACT

Ooids are accretionary grains commonly reported from turbulent, shallow-water environments. They have long been associated with microbially dominated ecosystems and often occur in close proximity to, or embedded within, stromatolites, yet have historically been thought to form solely through physicochemical processes. Numerous studies have revealed both constructive and destructive roles for microbes colonizing the surfaces of modern calcitic and aragonitic ooids, but there has been little evidence for the operation of these processes during the Archean and Proterozoic, when both ooids and microbially dominated ecosystems were more widespread. Recently described carbonate ooids from the 2.9 Ga Pongola Supergroup, South Africa, include well-preserved examples composed of diagenetic dolomite interpreted to have formed from a high-Mg-calcite precursor. Spatial distributions of organic matter and elements associated with metabolic activity (N, S, and P) were interpreted as evidence for a biologically induced origin. Here, we describe exceptionally well-preserved ooids composed of calcite, collected from Earth's oldest known carbonate lake system, the ~2.72 Ga Meentheena Member (Tumbiana Formation), Fortescue Group, Western Australia. We used optical microscopy, Raman spectroscopy, XRD, SEM-EDS, LA-ICP-MS, EA-IRMS, and a novel micro-XRF instrument to investigate an oolite shoal deposited between stromatolites that preserve abundant evidence for microbial activity. We report an extremely fine, radial-concentric, calcitic microfabric that is similar to the primary and early diagenetic fabrics of calcitic ooids reported from modern temperate lakes. Early diagenetic silica has trapped isotopically light and thermally mature organic matter. The close association of organic matter with mineral phases and microfabrics related to primary and early diagenetic processes suggest incorporation of organic matter occurred during accretion, likely due to the presence of microbial biofilms. We conclude that the oldest known calcitic ooids were likely formed through processes similar to those that mediate the accretion of ooids in similar environments today, including formation within a microbial biosphere.


Subject(s)
Bacterial Physiological Phenomena , Biofilms , Calcium Carbonate/analysis , Carbonates/analysis , Geologic Sediments/chemistry , Lakes/chemistry , Paleontology , Western Australia
5.
Nature ; 563(7730): 241-244, 2018 11.
Article in English | MEDLINE | ID: mdl-30333621

ABSTRACT

The Palaeoarchean supracrustal belts in Greenland contain Earth's oldest rocks and are a prime target in the search for the earliest evidence of life on Earth. However, metamorphism has largely obliterated original rock textures and compositions, posing a challenge to the preservation of biological signatures. A recent study of 3,700-million-year-old rocks of the Isua supracrustal belt in Greenland described a rare zone in which low deformation and a closed metamorphic system allowed preservation of primary sedimentary features, including putative conical and domical stromatolites1 (laminated accretionary structures formed by microbially mediated sedimentation). The morphology, layering, mineralogy, chemistry and geological context of the structures were attributed to the formation of microbial mats in a shallow marine environment by 3,700 million years ago, at the start of Earth's rock record. Here we report new research that shows a non-biological, post-depositional origin for the structures. Three-dimensional analysis of the morphology and orientation of the structures within the context of host rock fabrics, combined with texture-specific analyses of major and trace element chemistry, show that the 'stromatolites' are more plausibly interpreted as part of an assemblage of deformation structures formed in carbonate-altered metasediments long after burial. The investigation of the structures of the Isua supracrustal belt serves as a cautionary tale in the search for signs of past life on Mars, highlighting the importance of three-dimensional, integrated analysis of morphology, rock fabrics and geochemistry at appropriate scales.


Subject(s)
Fossils , Geologic Sediments/chemistry , Life , Uncertainty , Greenland , Sample Size , Time Factors
6.
Nature ; 537(7621): 500-501, 2016 09 22.
Article in English | MEDLINE | ID: mdl-27580031
7.
Astrobiology ; 15(11): 961-76, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26575217

ABSTRACT

UNLABELLED: A new generation of planetary rover instruments, such as PIXL (Planetary Instrument for X-ray Lithochemistry) and SHERLOC (Scanning Habitable Environments with Raman Luminescence for Organics and Chemicals) selected for the Mars 2020 mission rover payload, aim to map mineralogical and elemental composition in situ at microscopic scales. These instruments will produce large spectral cubes with thousands of channels acquired over thousands of spatial locations, a large potential science yield limited mainly by the time required to acquire a measurement after placement. A secondary bottleneck also faces mission planners after downlink; analysts must interpret the complex data products quickly to inform tactical planning for the next command cycle. This study demonstrates operational approaches to overcome these bottlenecks by specialized early-stage science data processing. Onboard, simple real-time systems can perform a basic compositional assessment, recognizing specific features of interest and optimizing sensor integration time to characterize anomalies. On the ground, statistically motivated visualization can make raw uncalibrated data products more interpretable for tactical decision making. Techniques such as manifold dimensionality reduction can help operators comprehend large databases at a glance, identifying trends and anomalies in data. These onboard and ground-side analyses can complement a quantitative interpretation. We evaluate system performance for the case study of PIXL, an X-ray fluorescence spectrometer. Experiments on three representative samples demonstrate improved methods for onboard and ground-side automation and illustrate new astrobiological science capabilities unavailable in previous planetary instruments. KEY WORDS: Dimensionality reduction-Planetary science-Visualization.


Subject(s)
Exobiology/instrumentation , Fluorescence , X-Rays
8.
Proc Natl Acad Sci U S A ; 109(38): 15146-51, 2012 Sep 18.
Article in English | MEDLINE | ID: mdl-22949693

ABSTRACT

The 3.45-billion-year-old Strelley Pool Formation of Western Australia preserves stromatolites that are considered among the oldest evidence for life on Earth. In places of exceptional preservation, these stromatolites contain laminae rich in organic carbon, interpreted as the fossil remains of ancient microbial mats. To better understand the biogeochemistry of these rocks, we performed microscale in situ sulfur isotope measurements of the preserved organic sulfur, including both Δ(33)S and . This approach allows us to tie physiological inference from isotope ratios directly to fossil biomass, providing a means to understand sulfur metabolism that is complimentary to, and independent from, inorganic proxies (e.g., pyrite). Δ(33)S values of the kerogen reveal mass-anomalous fractionations expected of the Archean sulfur cycle, whereas values show large fractionations at very small spatial scales, including values below -15‰. We interpret these isotopic patterns as recording the process of sulfurization of organic matter by H(2)S in heterogeneous mat pore-waters influenced by respiratory S metabolism. Positive Δ(33)S anomalies suggest that disproportionation of elemental sulfur would have been a prominent microbial process in these communities.


Subject(s)
Sulfur Isotopes/chemistry , Archaea/physiology , Australia , Fossils , Geologic Sediments , Geology/methods , Hydrogen Sulfide/chemistry , Ions , Organic Chemicals/chemistry , Sulfur Isotopes/analysis
9.
Proc Natl Acad Sci U S A ; 106(24): 9548-55, 2009 Jun 16.
Article in English | MEDLINE | ID: mdl-19515817

ABSTRACT

The approximately 3,450-million-year-old Strelley Pool Formation in Western Australia contains a reef-like assembly of laminated sedimentary accretion structures (stromatolites) that have macroscale characteristics suggestive of biological influence. However, direct microscale evidence of biology--namely, organic microbial remains or biosedimentary fabrics--has to date eluded discovery in the extensively-recrystallized rocks. Recently-identified outcrops with relatively good textural preservation record microscale evidence of primary sedimentary processes, including some that indicate probable microbial mat formation. Furthermore, we find relict fabrics and organic layers that covary with stromatolite morphology, linking morphologic diversity to changes in sedimentation, seafloor mineral precipitation, and inferred microbial mat development. Thus, the most direct and compelling signatures of life in the Strelley Pool Formation are those observed at the microscopic scale. By examining spatiotemporal changes in microscale characteristics it is possible not only to recognize the presence of probable microbial mats during stromatolite development, but also to infer aspects of the biological inputs to stromatolite morphogenesis. The persistence of an inferred biological signal through changing environmental circumstances and stromatolite types indicates that benthic microbial populations adapted to shifting environmental conditions in early oceans.


Subject(s)
Biodiversity , Biological Evolution , Marine Biology , Paleontology , Animals , Western Australia
10.
Nature ; 441(7094): 714-8, 2006 Jun 08.
Article in English | MEDLINE | ID: mdl-16760969

ABSTRACT

The 3,430-million-year-old Strelley Pool Chert (SPC) (Pilbara Craton, Australia) is a sedimentary rock formation containing laminated structures of probable biological origin (stromatolites). Determining the biogenicity of such ancient fossils is the subject of ongoing debate. However, many obstacles to interpretation of the fossils are overcome in the SPC because of the broad extent, excellent preservation and morphological variety of its stromatolitic outcrops--which provide comprehensive palaeontological information on a scale exceeding other rocks of such age. Here we present a multi-kilometre-scale palaeontological and palaeoenvironmental study of the SPC, in which we identify seven stromatolite morphotypes--many previously undiscovered--in different parts of a peritidal carbonate platform. We undertake the first morphotype-specific analysis of the structures within their palaeoenvironment and refute contemporary abiogenic hypotheses for their formation. Finally, we argue that the diversity, complexity and environmental associations of the stromatolites describe patterns that--in similar settings throughout Earth's history--reflect the presence of organisms.


Subject(s)
Fossils , Geologic Sediments/microbiology , Models, Biological , Australia , Carbonates/chemistry , Geologic Sediments/chemistry , History, Ancient , Paleontology , Seawater , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...