Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 15(6)2022 May 28.
Article in English | MEDLINE | ID: mdl-35745599

ABSTRACT

A series of novel Schiff bases-based TMP moieties have been designed and synthesized as potential anticancer agents. The target Schiff bases were screened for their cytotoxic activity against the MDA-MB-231 breast cancer cell line. Most of the tested molecules revealed good cytotoxic activity, especially compounds 4h, 4j and 5d. Being the most potent, compound 4h showed good tubulin polymerization inhibition activity as revealed by immunofluorescence analysis and ELISA assay. Additionally, compound 4h was screened for cell cycle disturbance and apoptosis induction. Pre-G1 apoptosis and cell growth halt at the G2/M phase were discovered to be caused by it. Moreover, compound 4h induced apoptosis via p53 and Bax activation, as well as reduced the level of Bcl-2. Additionally, the most potent compound 4h was lodged on nanostructured lipid carriers (NLCs). 23 full factorial design was involved to govern the influence of the fabrication variables on the in vitro characters of the casted NLCs. F3 was picked as the optimum formula exhibiting dominant desirability value 0.805, EE% 95.6 ± 2.4, PS 222.4 ±18.7, PDI 0.23 ± 0.05 and ZP −39.2 ± 3.9 Mv. Furthermore, F3 affirmed improved solubility and release over the drug suspension. In the comparative cytotoxic activity, F3 was capable of diminishing the IC50 by around 2.15 times for pure 4h, while nearly close to the IC50 of the reference drug. Thus, NLCs could be a potential platform for boosted antitumor activity.

2.
J Biochem Mol Toxicol ; 36(7): e23062, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35363936

ABSTRACT

Depression during pregnancy adversely affects fetal development. Desvenlafaxine drug is used for the treatment of gestational depression. In light of the well-established role of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in regulating neurogenesis and neural survival, the role of S100b in nerve cell energetic metabolism, differentiation of neurons and glial cells, an aberrant increase in NGF, BDNF and S100b expression in the fetal brain may contribute to desvenlafaxine cognitive disorders by altering brain development. This study is trying to determine the effect of desvenlafaxine on brain development. Thirty timed pregnant rats (from the 5th to the 20th day) were divided into three groups: control, low dose (5.14 mg/kg/day) and high dose (10.28 mg/kg/day) of desvenlafaxine where all animals received the corresponding doses by gavage. Maternal and fetal brain samples were fixed for histological, immunohistochemical (IHC) study of NGF and evaluated for BDNF and S100b genes expression. Desvenlafaxine induced some of the histopathological alterations in maternal and fetal rat brains. Moreover, IHC analysis of maternal and fetal rat brains showed that groups treated with desvenlafaxine demonstrated a significant increase of NGF protein immunoreactivity compared with that in the controls. Gene expression results revealed upregulation of messenger RNA BDNF and S100B expression. According to developmental changes in the brain, desvenlafaxine affects neonatal growth during pregnancy, which may lead to delay of brain development. So, it is essential to survey the roles of antidepressant drugs on neonatal development during pregnancy.


Subject(s)
Brain-Derived Neurotrophic Factor , Brain , Desvenlafaxine Succinate , Maternal Exposure , Nerve Growth Factor , Animals , Brain/drug effects , Brain/growth & development , Brain-Derived Neurotrophic Factor/metabolism , Desvenlafaxine Succinate/adverse effects , Female , Fetus/metabolism , Maternal Exposure/adverse effects , Nerve Growth Factor/metabolism , Pregnancy , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...