Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Physiol ; 238(1): 227-241, 2023 01.
Article in English | MEDLINE | ID: mdl-36477412

ABSTRACT

The elimination of transformed and viral infected cells by natural killer (NK) cells requires a specialized junction between NK and target cells, denominated immunological synapse (IS). After initial recognition, the IS enables the directed secretion of lytic granules content into the susceptible target cell. The lymphocyte function-associated antigen (LFA)-1 regulates NK effector function by enabling NK-IS assembly and maturation. The pathways underlying LFA-1 accumulation at the IS in NK cells remained uncharacterized. A kinase anchoring protein 350 (AKAP350) is a centrosome/Golgi-associated protein, which, in T cells, participates in LFA-1 activation by mechanisms that have not been elucidated. We first evaluated AKAP350 participation in NK cytolytic activity. Our results showed that the decrease in AKAP350 levels by RNA interference (AKAP350KD) inhibited NK-YTS cytolytic activity, without affecting conjugate formation. The impairment of NK effector function in AKAP350KD cells correlated with decreased LFA-1 clustering and defective IS maturation. AKAP350KD cells that were exclusively activated via LFA-1 showed impaired LFA-1 organization and deficient lytic granule translocation as well. In NK AKAP350KD cells, activation signaling through Vav1 was preserved up to 10 min of interaction with target cells, but significantly decreased afterwards. Experiments in YTS and in ex vivo NK cells identified an intracellular pool of LFA-1, which partially associated with the Golgi apparatus and, upon NK activation, redistributed to the IS in an AKAP350-dependent manner. The analysis of Golgi organization indicated that the decrease in AKAP350 expression led to the disruption of the Golgi integrity in NK cells. Alteration of Golgi function by BFA treatment or AKAP350 delocalization from this organelle also led to impaired LFA-1 localization at the IS. Therefore, this study characterizes AKAP350 participation in the modulation of NK effector function, revealing the existence of a Golgi-dependent trafficking pathway for LFA-1, which is relevant for LFA-1 organization at NK-lytic IS.


Subject(s)
A Kinase Anchor Proteins , Immunological Synapses , Killer Cells, Natural , Lymphocyte Function-Associated Antigen-1 , A Kinase Anchor Proteins/genetics , A Kinase Anchor Proteins/metabolism , Centrosome/metabolism , Cytotoxicity, Immunologic , Lymphocyte Function-Associated Antigen-1/metabolism , Signal Transduction , T-Lymphocytes/metabolism , Killer Cells, Natural/metabolism
2.
Biochimie ; 177: 127-131, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32841682

ABSTRACT

A-kinase anchoring protein 350 (AKAP350) is a centrosomal/Golgi scaffold protein, critical for the regulation of microtubule dynamics. AKAP350 recruits end-binding protein 1 (EB1) to the centrosome in mitotic cells, ensuring proper spindle orientation in epithelial cells. AKAP350 also interacts with p150glued, the main component of the dynactin complex. In the present work, we found that AKAP350 localized p150glued to the spindle poles, facilitating p150glued/EB1 interaction at these structures. Our results further showed that the decrease in AKAP350 expression reduced p150glued localization at astral microtubules and impaired the elongation of astral microtubules during anaphase. Overall, this study provides mechanistic data on how microtubule regulatory proteins gather to define microtubule dynamics in mitotic cells.


Subject(s)
A Kinase Anchor Proteins/physiology , Dynactin Complex/physiology , Spindle Poles/metabolism , Animals , Centrosome/metabolism , Centrosome/ultrastructure , Dogs , Madin Darby Canine Kidney Cells , Microtubules/metabolism , Microtubules/ultrastructure , Spindle Poles/ultrastructure
3.
J Immunother Cancer ; 8(1)2020 06.
Article in English | MEDLINE | ID: mdl-32518090

ABSTRACT

BACKGROUND: Natural killer and cytotoxic CD8+ T cells are major players during antitumor immunity. They express NKG2D, an activating receptor that promotes tumor elimination through recognition of the MHC class I chain-related proteins A and B (MICA and MICB). Both molecules are overexpressed on a great variety of tumors from different tissues, making them attractive targets for immunotherapy. However, tumors shed MICA and MICB, and the soluble forms of both (sMICA and sMICB) mediate tumor-immune escape. Some reports indicate that anti-MICA antibodies (Ab) can promote the restoration of antitumor immunity through the induction of direct antitumor effects (antibody-dependent cell-mediated cytotoxicity, ADCC) and scavenging of sMICA. Therefore, we reasoned that an active induction of anti-MICA Ab with an immunogenic protein might represent a novel therapeutic and prophylactic alternative to restore antitumor immunity. METHODS: We generated a highly immunogenic chimeric protein (BLS-MICA) consisting of human MICA fused to the lumazine synthase from Brucella spp (BLS) and used it to generate anti-MICA polyclonal Ab (pAb) and to investigate if these anti-MICA Ab can reinstate antitumor immunity in mice using two different mouse tumors engineered to express MICA. We also explored the underlying mechanisms of this expected therapeutic effect. RESULTS: Immunization with BLS-MICA and administration of anti-MICA pAb elicited by BLS-MICA significantly delayed the growth of MICA-expressing mouse tumors but not of control tumors. The therapeutic effect of immunization with BLS-MICA included scavenging of sMICA and the anti-MICA Ab-mediated ADCC, promoting heightened intratumoral M1/proinflammatory macrophage and antigen-experienced CD8+ T cell recruitment. CONCLUSIONS: Immunization with the chimeric protein BLS-MICA constitutes a useful way to actively induce therapeutic anti-MICA pAb that resulted in a reprogramming of the antitumor immune response towards an antitumoral/proinflammatory phenotype. Hence, the BLS-MICA chimeric protein constitutes a novel antitumor vaccine of potential application in patients with MICA-expressing tumors.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibody-Dependent Cell Cytotoxicity/immunology , Histocompatibility Antigens Class I/immunology , Lymphoma/immunology , Recombinant Fusion Proteins/immunology , Urinary Bladder Neoplasms/immunology , Animals , Brucella/enzymology , Female , Histocompatibility Antigens Class I/genetics , Lymphoma/pathology , Lymphoma/therapy , Male , Mice , Mice, Inbred C57BL , Multienzyme Complexes/genetics , Multienzyme Complexes/immunology , NK Cell Lectin-Like Receptor Subfamily K/genetics , NK Cell Lectin-Like Receptor Subfamily K/immunology , Tumor Cells, Cultured , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/therapy
4.
Cancer Lett ; 461: 65-77, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31319138

ABSTRACT

CDC42 interacting protein 4 (CIP4) is a CDC42 effector that coordinates membrane deformation and actin polymerization. The correlation of CIP4 overexpression with metastatic capacity has been characterized in several types of cancer. However, little information exists on how CIP4 function is regulated. CIP4 interacts with A-kinase (PKA) anchoring protein 350 (AKAP350) and CIP4 is also a PKA substrate. Here, we identified CIP4 T225 as the major CIP4 PKA phosphorylation site. In vitro and in vivo experiments using hepatocellular carcinoma (HCC) and breast cancer cells showed that expression of a CIP4(T225E) phosphomimetic mutant increased cancer cell metastatic capacity and that, conversely, expression of a CIP4(T225A) non-phosphorylatable mutant reduced invasive properties. PKA inhibition decreased to CIP4(T225A) cell-levels control but not CIP4(T225E) cell migratory and invasive efficiency. Concomitantly, our studies indicate that CIP4 T225 phosphorylation promotes the formation of functional invadopodia and enhances CIP4 localization at these structures. Our findings further provide mechanistic data indicating that CIP4 T225 phosphorylation facilitates CIP4 interaction with CDC42. Altogether this study identifies a signaling pathway that involves CIP4 phosphorylation by PKA during the acquisition of a metastatic phenotype in cancer cells.


Subject(s)
Breast Neoplasms/pathology , Carcinoma, Hepatocellular/pathology , Cyclic AMP-Dependent Protein Kinases/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/secondary , Lung Neoplasms/secondary , Microtubule-Associated Proteins/metabolism , Minor Histocompatibility Antigens/metabolism , Animals , Apoptosis , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Movement , Cell Proliferation , Female , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mice , Mice, Nude , Microtubule-Associated Proteins/genetics , Minor Histocompatibility Antigens/genetics , Neoplasm Invasiveness , Phosphorylation , Podosomes/metabolism , Podosomes/pathology , Signal Transduction , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , cdc42 GTP-Binding Protein/metabolism
5.
Sci Rep ; 9(1): 2815, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30809021

ABSTRACT

Hepatocellular carcinoma (HCC) is a highly metastatic cancer with very poor prognosis. AMP activated kinase (AMPK) constitutes a candidate to inhibit HCC progression. First, AMPK is downregulated in HCC. Second, glucose starvation induces apoptosis in HCC cells via AMPK. Correspondingly, metformin activates AMPK and inhibits HCC cell proliferation. Nevertheless, the effect of AMPK activation on HCC cell invasiveness remains elusive. Here, migration/invasion was studied in HCC cells exposed to metformin and glucose starvation. Cell viability, proliferation and differentiation, as well as AMPK and PKA activation were analyzed. In addition, invasiveness in mutants of the AMPKα activation loop was assessed. Metformin decreased cell migration, invasion and epithelial-mesenchymal transition, and interference with AMPKα expression avoided metformin actions. Those antitumor effects were potentiated by glucose deprivation. Metformin activated AMPK at the same time that inhibited PKA, and both effects were enhanced by glucose starvation. Given that AMPKα(S173) phosphorylation by PKA decreases AMPK activation, we hypothesized that the reduction of PKA inhibitory effect by metformin could explain the increased antitumor effects observed. Supporting this, in AMPK activating conditions, cell migration/invasion was further impaired in AMPKα(S173C) mutant cells. Metformin emerges as a strong inhibitor of migration/invasion in HCC cells, and glucose restriction potentiates this effect.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Carcinoma, Hepatocellular/physiopathology , Cell Movement , Glucose/metabolism , Liver Neoplasms/physiopathology , Metformin/pharmacology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Hep G2 Cells , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Neoplasm Invasiveness
6.
J Cell Physiol ; 233(2): 1468-1480, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28548701

ABSTRACT

Most epithelial cells contain apical membrane structures associated to bundles of actin filaments, which constitute the brush border. Whereas microtubule participation in the maintenance of the brush border identity has been characterized, their contribution to de novo microvilli organization remained elusive. Hereby, using a cell model of individual enterocyte polarization, we found that nocodazole induced microtubule depolymerization prevented the de novo brush border formation. Microtubule participation in brush border actin organization was confirmed in polarized kidney tubule MDCK cells. We also found that centrosome, but not Golgi derived microtubules, were essential for the initial stages of brush border development. During this process, microtubule plus ends acquired an early asymmetric orientation toward the apical membrane, which clearly differs from their predominant basal orientation in mature epithelia. In addition, overexpression of the microtubule plus ends associated protein CLIP170, which regulate actin nucleation in different cell contexts, facilitated brush border formation. In combination, the present results support the participation of centrosomal microtubule plus ends in the activation of the polarized actin organization associated to brush border formation, unveiling a novel mechanism of microtubule regulation of epithelial polarity.


Subject(s)
Colon/physiology , Enterocytes/physiology , Epithelial Cells/physiology , Kidney/physiology , Microtubules/physiology , Microvilli/physiology , Actin Cytoskeleton/physiology , Animals , Cell Polarity , Centromere/physiology , Colon/drug effects , Colon/metabolism , Colon/ultrastructure , Dogs , Enterocytes/drug effects , Enterocytes/metabolism , Enterocytes/ultrastructure , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/ultrastructure , Humans , Kidney/drug effects , Kidney/ultrastructure , Madin Darby Canine Kidney Cells , Microtubule-Associated Proteins/metabolism , Microtubules/drug effects , Microtubules/metabolism , Microvilli/drug effects , Microvilli/metabolism , Nocodazole/pharmacology , Time Factors , Tubulin Modulators/pharmacology
7.
Sci Rep ; 7(1): 14894, 2017 11 02.
Article in English | MEDLINE | ID: mdl-29097729

ABSTRACT

The organization of epithelial cells to form hollow organs with a single lumen requires the accurate three-dimensional arrangement of cell divisions. Mitotic spindle orientation is defined by signaling pathways that provide molecular links between specific spots at the cell cortex and astral microtubules, which have not been fully elucidated. AKAP350 is a centrosomal/Golgi scaffold protein, implicated in the regulation of microtubule dynamics. Using 3D epithelial cell cultures, we found that cells with decreased AKAP350 expression (AKAP350KD) formed polarized cysts with abnormal lumen morphology. Analysis of mitotic cells in AKAP350KD cysts indicated defective spindle alignment. We established that AKAP350 interacts with EB1, a microtubule associated protein that regulates spindle orientation, at the spindle poles. Decrease of AKAP350 expression lead to a significant reduction of EB1 levels at spindle poles and astral microtubules. Conversely, overexpression of EB1 rescued the defective spindle orientation induced by deficient AKAP350 expression. The specific delocalization of the AKAP350/EB1complex from the centrosome decreased EB1 levels at astral microtubules and lead to the formation of 3D-organotypic structures which resembled AKAP350KD cysts. We conclude that AKAP350 recruits EB1 to the spindle poles, ensuring EB1 presence at astral microtubules and proper spindle orientation during epithelial morphogenesis.


Subject(s)
A Kinase Anchor Proteins/metabolism , Cytoskeletal Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Protein Interaction Maps , Spindle Poles/metabolism , Animals , Cell Culture Techniques , Dogs , Epithelial Cells/cytology , Epithelial Cells/metabolism , Epithelial Cells/ultrastructure , Madin Darby Canine Kidney Cells , Mitosis , Spindle Poles/ultrastructure
8.
Oncotarget ; 7(14): 17815-28, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-26894973

ABSTRACT

The signaling pathways that govern survival response in hepatic cancer cells subjected to nutritional restriction have not been clarified yet. In this study we showed that liver cancer cells undergoing glucose deprivation both arrested in G0/G1 and died mainly by apoptosis. Treatment with the AMPK activator AICAR phenocopied the effect of glucose deprivation on cell survival, whereas AMPK silencing in HepG2/C3A, HuH-7 or SK-Hep-1 cells blocked the cell cycle arrest and the increase in apoptotic death induced by glucose starvation. Both AMPK and PKA were promptly activated after glucose withdrawal. PKA signaling had a dual role during glucose starvation: whereas it elicited an early decreased in cell viability, it later improved this parameter. We detected AMPK phosphorylation (AMPKα(Ser173)) by PKA, which was increased in glucose starved cells and was associated with diminution of AMPK activation. To better explore this inhibitory effect, we constructed a hepatocarcinoma derived cell line which stably expressed an AMPK mutant lacking that PKA phosphorylation site: AMPKα1(S173C). Expression of this mutant significantly decreased viability in cells undergoing glucose starvation. Furthermore, after 36 h of glucose deprivation, the index of AMPKα1(S173C) apoptotic cells doubled the apoptotic index observed in control cells. Two main remarks arise: 1. AMPK is the central signaling kinase in the scenario of cell cycle arrest and death induced by glucose starvation in hepatic cancer cells; 2. PKA phosphorylation of Ser173 comes out as a strong control point that limits the antitumor effects of AMPK in this situation.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Carcinoma, Hepatocellular/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Glucose/deficiency , Liver Neoplasms/metabolism , Apoptosis/physiology , Carcinoma, Hepatocellular/enzymology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Glucose/metabolism , Hep G2 Cells , Humans , Liver Neoplasms/enzymology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Signal Transduction
9.
J Cell Sci ; 128(17): 3277-89, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26208639

ABSTRACT

The acquisition of a migratory phenotype is central in processes as diverse as embryo differentiation and tumor metastasis. An early event in this phenomenon is the generation of a nucleus-centrosome-Golgi back-to-front axis. AKAP350 (also known as AKAP9) is a Golgi and centrosome scaffold protein that is involved in microtubule nucleation. AKAP350 interacts with CIP4 (also known as TRIP10), a cdc42 effector that regulates actin dynamics. The present study aimed to characterize the participation of centrosomal AKAP350 in the acquisition of migratory polarity, and the involvement of CIP4 in the pathway. The decrease in total or in centrosomal AKAP350 led to decreased formation of the nucleus-centrosome-Golgi axis and defective cell migration. CIP4 localized at the centrosome, which was enhanced in migratory cells, but inhibited in cells with decreased centrosomal AKAP350. A decrease in the CIP4 expression or inhibition of the CIP4-AKAP350 interaction also led to defective cell polarization. Centrosome positioning, but not nuclear movement, was affected by loss of CIP4 or AKAP350 function. Our results support a model in which AKAP350 recruits CIP4 to the centrosome, providing a centrosomal scaffold to integrate microtubule and actin dynamics, thus enabling centrosome polarization and ensuring cell migration directionality.


Subject(s)
A Kinase Anchor Proteins/metabolism , Cell Movement/physiology , Cell Polarity/physiology , Centrosome/metabolism , Cytoskeletal Proteins/metabolism , Golgi Apparatus/metabolism , Microtubule-Associated Proteins/metabolism , A Kinase Anchor Proteins/genetics , Animals , Cytoskeletal Proteins/genetics , Dogs , Golgi Apparatus/genetics , Hep G2 Cells , Humans , Madin Darby Canine Kidney Cells , Microtubule-Associated Proteins/genetics , Microtubules/genetics , Microtubules/metabolism , Minor Histocompatibility Antigens
SELECTION OF CITATIONS
SEARCH DETAIL
...