Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cureus ; 15(6): e40943, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37503477

ABSTRACT

INTRODUCTION: Obesity (Obe) is a chronic metabolic disorder usually complicated by impaired fibrinolytic activity. Apigenin (Api) is one of the flavonoids that have anti-adiposity effects. This study aimed to explore the therapeutic potential of Api in high-fat diet (HFD)-induced obese rats. METHODS: Twenty-four Wistar adult male rats were randomly allocated into control group, supplemented with a normal pellet diet (NPD); Api group, supplemented with Api (10 mg/kg) for eight weeks; Obe group, obesity was induced by feeding HFD for eight weeks; and Obe/Api group, obese rats supplemented with Api for eight weeks. Body mass index (BMI), homeostatic model assessment of insulin resistance (HOMA-IR), tumor necrosis factor-α (TNF-α), malondialdehyde (MDA), total superoxide dismutase (t-SOD) activity, and plasminogen activator inhibitor-1 (PAI-1) were measured. RESULTS: Compared to the control group, Obe group exhibited a significant increase in BMI, HOMA-IR, TNF-α, MDA, and PAI-1. These results were also associated with a significant decrease in serum t-SOD activity. Supplementation of Api alleviated the measured deteriorated parameters and ameliorated visceral adiposity in obese rats. CONCLUSION: This study provides compelling evidence regarding a promising role for Api in ameliorating the impairment of fibrinolytic activity in an Obe animal model. The observed effects are likely mediated through Api's anti-obesity properties, as well as its indirect modulation of PAI-1, oxidative stress, and inflammation. Future clinical studies are recommended that may make benefit of the preclinical therapeutic use of apigenin in obesity-associated fibrinolytic dysfunctions.

2.
Food Funct ; 14(15): 7156-7175, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37462414

ABSTRACT

Vitis vinifera Egyptian edible leaf extract loaded on a soybean lecithin, cholesterol, and Carbopol gel preparation (VVL-liposomal gel) was prepared to maximize the in vivo wound healing and anti-MRSA activities for the crude extract, using an excision wound model and focusing on TLR-2, MCP-1, CXCL-1, CXCL-2, IL-6 and IL-1ß, and MRSA (wound infection model, and peritonitis infection model). VVL-liposomal gel was stable with significant drug entrapment efficiency reaching 88% ± 3, zeta potential value ranging from -50 to -63, and a size range of 50-200 µm nm in diameter. The in vivo evaluation proved the ability of VVL-liposomal gel to gradually release the drugs in a sustained manner with greater complete wound healing effect and tissue repair after 7 days of administration, with a significant decrease in bacterial count compared with the crude extract. Phytochemical investigation of the crude extract of the leaves yielded fourteen compounds: two new stilbenes (1, 2), along with twelve known ones (3-14). Furthermore, a computational study was conducted to identify the genes and possible pathways responsible for the anti-MRSA activity of the isolated compounds, and inverse docking was used to identify the most likely molecular targets that could mediate the extract's antibacterial activity. Gyr-B was discovered to be the best target for compounds 1 and 2. Hence, VVL-liposomal gel can be used as a novel anti-dermatophytic agent with potent wound healing and anti-MRSA capacity, paving the way for future clinical research.


Subject(s)
Vitis , Wound Healing , Anti-Bacterial Agents/chemistry , Liposomes/chemistry , Gels , Phytochemicals/pharmacology , Plant Extracts/chemistry
3.
Thromb Res ; 134(2): 412-7, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24953906

ABSTRACT

INTRODUCTION: Plant-derived and endogenous vanilloid-like agents exert their effects on cells through transient receptor potential vanilloid-1 (TRPV1). Little is known about the effects of these agents on platelet aggregation. We investigated the effect of various vanilloid-like agents on in-vitro platelet aggregation and tested whether this action is mediated through TRPV1. Understanding the mechanism of action of these compounds in platelets is important in that these compounds may be developed as novel anti-platelet agents. MATERIALS AND METHODS: The effects of plant-derived (capsaicin; dihydrocapsaicin, DHC) and endogenous vanilloid-like agents (N-oleoyldopamine, OLDA; N-arachidonoyl-dopamine, NADA) on platelet aggregation were investigated using ADP (5, 10µM), collagen (4, 8µg/mL) and arachidonic acid (AA, 300, 400µg/mL) as agonists. The direct effects of these agents on platelet viability were also determined using an LDH release assay. RESULTS: Capsaicin, OLDA and NADA inhibited ADP-induced platelet aggregation in a concentration-dependent manner. OLDA and NADA, but not capsaicin and DHC, inhibited collagen-induced aggregation, whereas AA-induced aggregation was inhibited by capsaicin, DHC and NADA, but not OLDA. Inhibition of aggregation was not due to direct toxicity of these agents towards platelets. The TRPV1 antagonist, SB-452533, did not affect inhibition of ADP-induced platelet aggregation by capsaicin and OLDA. CONCLUSIONS: These results demonstrate that the endovanilloids, OLDA and NADA, and plant-derived vanilloid, capsaicin, inhibit ADP-induced platelet aggregation. Collagen-induced aggregation was inhibited only by endovanilloids, whereas AA-induced aggregation was inhibited by capsaicin, DHC and NADA. This inhibition was not due to direct toxic effects of these agents, nor was inhibition of ADP-induced aggregation TRPV1 mediated.


Subject(s)
Arachidonic Acids/pharmacology , Capsaicin/analogs & derivatives , Dopamine/analogs & derivatives , Plants/chemistry , Platelet Aggregation Inhibitors/pharmacology , TRPV Cation Channels/metabolism , Adenosine Diphosphate/metabolism , Adolescent , Adult , Aged , Arachidonic Acids/chemistry , Blood Platelets/drug effects , Capsaicin/chemistry , Capsaicin/pharmacology , Dopamine/chemistry , Dopamine/pharmacology , Humans , Middle Aged , Platelet Aggregation/drug effects , Platelet Aggregation Inhibitors/chemistry , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...