Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(16): 29044-29062, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-36299089

ABSTRACT

Temporally coherent supercontinuum sources constitute an attractive alternative to bulk crystal-based sources of few-cycle light pulses. We present a monolithic fiber-optic configuration for generating transform-limited temporally coherent supercontinuum pulses with central wavelength at 1.06 µm and duration as short as 13.0 fs (3.7 optical cycles). The supercontinuum is generated by the action of self-phase modulation and optical wave breaking when pumping an all-normal dispersion photonic crystal fiber with pulses of hundreds of fs duration produced by all-fiber chirped pulsed amplification. Avoidance of free-space propagation between stages confers unequalled robustness, efficiency and cost-effectiveness to this novel configuration. Collectively, the features of all-fiber few-cycle pulsed sources make them powerful tools for applications benefitting from the ultrabroadband spectra and ultrashort pulse durations. Here we exploit these features and the deep penetration of light in biological tissues at the spectral region of 1 µm, to demonstrate their successful performance in ultrabroadband multispectral and multimodal nonlinear microscopy.

2.
Appl Opt ; 61(32): 9386-9397, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36606897

ABSTRACT

A fiber laser system emitting ultrashort femtosecond pulses at 1550 nm with configurable properties has been developed as an excitation source for the two-photon absorption transient current technique (TPA-TCT). The modules of the system are designed to provide the optical specifications required at the output for localized characterization of semiconductor radiation detectors: variation of pulse energy between 10 nJ and 10p J, variation of the pulse repetition rate from 8.2 MHz to single shot, and variation of pulse duration between 300 and 600 fs. The validity of the system as an excitation source in the TPA-TCT is demonstrated by measuring spatially resolved excited charge carriers in a silicon detector.

3.
Sci Rep ; 10(1): 7242, 2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32350325

ABSTRACT

We use self-calibrating dispersion scan to experimentally detect and quantify the presence of pulse train instabilities in ultrashort laser pulse trains. We numerically test our approach against two different types of pulse instability, namely second-order phase fluctuations and random phase instability, where the introduction of an adequate metric enables univocally quantifying the amount of instability. The approach is experimentally demonstrated with a supercontinuum fibre laser, where we observe and identify pulse train instabilities due to nonlinear propagation effects under anomalous dispersion conditions in the photonic crystal fibre used for spectral broadening. By replacing the latter with an all-normal dispersion fibre, we effectively correct the pulse train instability and increase the bandwidth of the generated coherent spectrum. This is further confirmed by temporal compression and measurement of the output pulses down to 15 fs using dispersion scan.

SELECTION OF CITATIONS
SEARCH DETAIL
...