Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Commun Signal ; 22(1): 112, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38347507

ABSTRACT

BACKGROUND: Though (1S, 3R)-RSL3 has been used widely in basic research as a small molecular inducer of ferroptosis, the toxicity on normal cells and poor pharmacokinetic properties of RSL3 limited its clinical application. Here, we investigated the synergism of non-thermal plasma (NTP) and low-concentration RSL3 and attempted to rise the sensitivity of NSCLC cells on RSL3. METHODS: CCK-8 assay was employed to detect the change of cell viability. Microscopy and flowcytometry were applied to identify lipid peroxidation, cell death and reactive oxygen species (ROS) level respectively. The molecular mechanism was inspected with western blot and RT-qPCR. A xenograft mice model was adopted to investigate the effect of NTP and RSL3. RESULTS: We found the synergism of NTP and low-concentration RSL3 triggered severe mitochondria damage, more cell death and rapid ferroptosis occurrence in vitro and in vivo. NTP and RSL3 synergistically induced xCT lysosomal degradation through ROS/AMPK/mTOR signaling. Furthermore, we revealed mitochondrial ROS was the main executor for ferroptosis induced by the combined treatment. CONCLUSION: Our research shows NTP treatment promoted the toxic effect of RSL3 by inducing more ferroptosis rapidly and provided possibility of RSL3 clinical application.


Subject(s)
Ferroptosis , Lung Neoplasms , Animals , Humans , Mice , AMP-Activated Protein Kinases , Lysosomes/metabolism , Reactive Oxygen Species/metabolism , TOR Serine-Threonine Kinases , Carbolines/adverse effects , Carbolines/toxicity
2.
Exp Cell Res ; 410(1): 112946, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34826424

ABSTRACT

The principle underlying radiotherapy is to kill cancer cells while minimizing the harmful effects on non-cancer cells, which has still remained as a major challenge. In relation, ferroptosis has recently been proposed as a novel mechanism of radiation-induced cell death. In this study, we investigated and demonstrated the role of Hemin as an iron overloading agent in the generation of reactive oxygen species (ROS) induced by ionizing radiation in lung cancer and non-cancer cells. It was found that the presence of Hemin in irradiated lung cancer cells enhanced the productivity of initial ROS, resulting in lipid peroxidation and subsequent ferroptosis. We observed that application of Hemin as a co-treatment increased the activity of GPx4 degradation in both cancer and normal lung cells. Furthermore, Hemin protected normal lung cells against radiation-induced cell death, in that it suppressed ROS after radiation, and boosted the production of bilirubin which was a lipophilic ROS antioxidant. In addition, we demonstrated significant FTH1 expression in normal lung cells when compared to lung cancer cells, which prevented iron from playing a role in increasing IR-induced cell death. Our findings demonstrated that Hemin had a dual function in enhancing the radiosensitivity of ferroptosis in lung cancer cells while promoting cell survival in normal lung cells.


Subject(s)
Ferritins/genetics , Hemin/pharmacology , Lung Neoplasms/radiotherapy , Oxidoreductases/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , A549 Cells , Animals , Cell Death/drug effects , Cell Death/radiation effects , Cell Line, Tumor , Cell Survival/drug effects , Ferroptosis/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/radiation effects , Hemin/chemistry , Heterografts , Humans , Iron/metabolism , Lipid Peroxidation/drug effects , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Mice , Radiation Tolerance/drug effects , Radiation, Ionizing , Reactive Oxygen Species/metabolism
3.
Int J Radiat Oncol Biol Phys ; 112(5): 1216-1228, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34838866

ABSTRACT

PURPOSE: Radioresistance is a major cause of treatment failure in tumor radiation therapy, and the underlying mechanisms of radioresistance are still elusive. Golgi phosphoprotein 3 (GOLPH3) has been reported to associate tightly with cancer progression and chemoresistance. Herein, we explored whether GOLPH3 mediated radioresistance of lung adenocarcinoma (LUAD) and whether targeted suppression of GOLPH3 sensitized LUAD to radiation therapy. METHODS AND MATERIALS: The aberrant expression of GOLPH3 was evaluated by immunohistochemistry in LUAD clinical samples. To evaluate the association between GOLPH3 and radioresistance, colony formation and apoptosis were assessed in control and GOLPH3 knockdown cells. γ-H2AX foci and level determination and micronucleus test were used to analyze DNA damage production and repair. The rescue of GOLPH3 knockdown was then performed by exogenous expression of small interfering RNA-resistant mutant GOLPH3 to confirm the role of GOLPH3 in DNA damage repair. Mechanistically, the effect of GOLPH3 on regulating stability and nuclear accumulation of epidermal growth factor receptor (EGFR) and the activation of DNA-dependent protein kinase (DNA-PK) were investigated by quantitative real-time polymerase chain reaction, western blot, immunofluorescence, and coimmunoprecipitation. The role of GOLPH3 in vivo in radioresistance was determined in a xenograft model. RESULTS: In tumor tissues of 33 patients with LUAD, the expression of GOLPH3 showed significant increases compared with those in matched normal tissues. Knocking down GOLPH3 reduced the clonogenic capacity, impaired double-strand break (DSB) repair, and enhanced apoptosis after irradiation. In contrast, reversal of GOLPH3 depletion rescued the impaired repair of radiation-induced DSBs. Mechanistically, loss of GOLPH3 accelerated the degradation of EGFR in lysosome, causing the reduction in EGFR levels, thereby weakening nuclear accumulation of EGFR and attenuating the activation of DNA-PK. Furthermore, adenovirus-mediated GOLPH3 knockdown could enhance the ionizing radiation response in the LUAD xenograft model. CONCLUSIONS: GOLPH3 conferred resistance of LUAD to ionizing radiation via stabilizing EGFR, and targeted suppression of GOLPH3 might be considered as a potential therapeutic strategy for sensitizing LUAD to radiation therapy.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/radiotherapy , Apoptosis/radiation effects , Cell Line, Tumor , DNA , DNA Repair , ErbB Receptors/genetics , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/radiotherapy , Membrane Proteins/genetics , Phosphoproteins/genetics , Phosphoproteins/pharmacology , Phosphoproteins/therapeutic use , Radiation Tolerance/genetics
4.
Ann Transl Med ; 9(8): 628, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33987326

ABSTRACT

BACKGROUND: Acquired radioresistant cells exhibit many characteristic changes which may influence cancer progression and further treatment options. The purpose of this study is to investigate the changes of radioresistant human epidermal growth factor receptor 2 (HER2)-positive breast cancer cells on both phenotypic and molecular levels. METHODS: We established an acquired radioresistant cell line from its parental NF639 cell line (HER2-positive) by fractionated radiation and assessed changes in cellular morphology, proliferation, migration, anti-apoptosis activity, basal reactive oxygen species (ROS) level and energy metabolism. RNA-sequencing (RNA-seq) was also used to reveal the potential regulating genes and molecular mechanisms associated with the acquired changed phenotypes. Real-time PCR was used to validate the results of RNA-seq. RESULTS: The NF639R cells exhibited increased radioresistance and enhanced activity of proliferation, migration and anti-apoptosis, but decreased basal ROS. Two main energy metabolism pathways, mitochondrial respiration and glycolytic, were also upregulated. Furthermore, 490 differentially expressed genes were identified by RNA-seq. Enrichment analysis based on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes showed many differently expressed genes were significantly enriched in cell morphology, proliferation, migration, anti-apoptosis, antioxidation, tumor stem cells and energy metabolism and the signaling cascades such as the transforming growth factor-ß, Wnt, Hedgehog, vascular endothelial growth factor, retinoic acid-inducible gene I (RIG-I)-like receptor, Toll-like receptor and nucleotide oligomerization domain (NOD)-like receptor were significantly altered in NF639R cells. CONCLUSIONS: In clinical radiotherapy, repeat radiotherapy for short-term recurrence of breast cancer may result in enhanced radioresistance and promote malignant progression. Our research provided hints to understand the tumor resistance to radiotherapy de novo and recurrence with a worse prognosis following radiotherapy.

5.
Int J Mol Sci ; 21(9)2020 May 11.
Article in English | MEDLINE | ID: mdl-32403326

ABSTRACT

Micheliolide (MCL) has shown promising anti-inflammatory and anti-tumor efficacy. However, whether and how MCL enhances the sensitivity of non-small-cell lung cancer (NSCLC) to radiotherapy are still unknown. In the present paper, we found that MCL exerted a tumor cell killing effect on NSCLC cells in a dose-dependent manner, and MCL strongly sensitized p53-deficient NSCLC cells, but not the cells with wild-type p53 to irradiation (IR). Meanwhile, MCL markedly inhibited the expression of hypoxia-inducible factor-1α (HIF-1α) after IR and hypoxic exposure in H1299 and Calu-1 cells rather than in H460 cells. Consistently, radiation- or hypoxia-induced expression of vascular endothelial growth factor (VEGF) was also significantly inhibited by MCL in H1299 and Calu-1 cells, but not in H460 cells. Therefore, inhibition of the HIF-1α pathway might, at least in part, contribute to the radiosensitizing effect of MCL. Further study showed that MCL could accelerate the degradation of HIF-1α through the ubiquitin-proteosome system. In addition, the transfection of wild-type p53 into p53-null cells (H1299) attenuated the effect of MCL on inhibiting HIF-1α expression. These results suggest MCL effectively sensitizes p53-deficient NSCLC cells to IR in a manner of inhibiting the HIF-1α pathway via promoting HIF-1α degradation, and p53 played a negative role in MCL-induced HIF-1α degradation.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Lung Neoplasms/genetics , Radiation Tolerance/drug effects , Sesquiterpenes, Guaiane/pharmacology , Tumor Suppressor Protein p53/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Hypoxia , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Cell Survival/radiation effects , Dose-Response Relationship, Drug , Dose-Response Relationship, Radiation , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/radiation effects , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Radiation Tolerance/genetics , Radiation, Ionizing , Tumor Suppressor Protein p53/deficiency , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...