Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 14: 1233661, 2023.
Article in English | MEDLINE | ID: mdl-38318128

ABSTRACT

Growing knowledge of the host-microbiota of vertebrates has shown the prevalence of sex-specific differences in the microbiome. However, there are virtually no studies assessing sex-associated variation in the microbiome of cephalopods. Here we assess sex-specific variation in the common octopus (Octopus vulgaris) skin microbiome using amplicon sequencing targeting the V4 hypervariable region of prokaryote 16S rRNA genes. Skin and mantle-associated mucus was collected from wild adult individuals of common Octopus (Octopus vulgaris) (9 males and 7 females of similar size). There were no significant differences in the alpha diversity of microbial communities associated with skin or mantle mucosa between sexes. However, our results clearly indicate that adult octopus males and females have a distinct microbial community composition in both skin and mantle associated mucus communities, with female microbiome being dominated by Firmicutes (48.1%), while that of males contained a majority of Proteobacteria (60.5%), with Firmicutes representing only 3.30%, not finding significant differentiation in the microbial communities between the tissues explored. The dominance of different taxa in the skin of O. vulgaris females and males (e.g., Mycoplasmatales and Lactococcus in females and Rhizobiales and Rhodobacteriales in males) suggests a sex-specific symbiosis in which those microbes benefit from easy access to distinct substrates present in female and male skin, respectively. Given the lack of differences in size between specimens of both sexes in this study, we hypothesize differences in hormone profile, as well as behavioral or ecological differences between sexes in the wild, as the main drivers of microbiome differentiation between sexes. Most knowledge of cephalopod microbiota is limited to the digestive tract and the reproductive system. However, cephalopod skin is an organ with a plethora of functions. This is a first attempt to characterize cephalopod skin microbiota and determine sex influence on it.

2.
Sci Data ; 9(1): 609, 2022 10 08.
Article in English | MEDLINE | ID: mdl-36209315

ABSTRACT

Cephalopods have been considered enigmatic animals that have attracted the attention of scientists from different areas of expertise. However, there are still many questions to elucidate the way of life of these invertebrates. The aim of this study is to construct a reference transcriptome in Octopus vulgaris early life stages to enrich existing databases and provide a new dataset that can be reused by other researchers in the field. For that, samples from different developmental stages were combined including embryos, newly-hatched paralarvae, and paralarvae of 10, 20 and 40 days post-hatching. Additionally, different dietary and rearing conditions and pathogenic infections were tested. At least three biological replicates were analysed per condition and submitted to RNA-seq analysis. All sequencing reads from experimental conditions were combined in a single dataset to generate a reference transcriptome assembly that was functionally annotated. The number of reads aligned to this reference was counted to estimate the transcript abundance in each sample. This dataset compiled a complete reference for future transcriptomic studies in O. vulgaris.


Subject(s)
Octopodiformes , Transcriptome , Animals , Octopodiformes/genetics , RNA-Seq
3.
Front Physiol ; 11: 765, 2020.
Article in English | MEDLINE | ID: mdl-32848811

ABSTRACT

In representative species of all vertebrate classes, the oral ejection of upper digestive tract contents by vomiting or regurgitation is used to void food contaminated with toxins or containing indigestible material not voidable in the feces. Vomiting or regurgitation has been reported in a number of invertebrate marine species (Exaiptasia diaphana, Cancer productus, and Pleurobranchaea californica), prompting consideration of whether cephalopods have this capability. This "hypothesis and theory" paper reviews four lines of supporting evidence: (1) the mollusk P. californica sharing some digestive tract morphological and innervation similarities with Octopus vulgaris is able to vomit or regurgitate with the mechanisms well characterized, providing an example of motor program switching; (2) a rationale for vomiting or regurgitation in cephalopods based upon the potential requirement to void indigestible material, which may cause damage and ejection of toxin contaminated food; (3) anecdotal reports (including from the literature) of vomiting- or regurgitation-like behavior in several species of cephalopod (Sepia officinalis, Sepioteuthis sepioidea, O. vulgaris, and Enteroctopus dofleini); and (4) anatomical and physiological studies indicating that ejection of gastric/crop contents via the buccal cavity is a theoretical possibility by retroperistalsis in the upper digestive tract (esophagus, crop, and stomach). We have not identified any publications refuting our hypothesis, so a balanced review is not possible. Overall, the evidence presented is circumstantial, so experiments adapting current methodology (e.g., research community survey, in vitro studies of motility, and analysis of indigestible gut contents and feces) are described to obtain additional evidence to either support or refute our hypothesis. We recognize the possibility that further research may not support the hypothesis; therefore, we consider how cephalopods may protect themselves against ingestion of toxic food by external chemodetection prior to ingestion and digestive gland detoxification post-ingestion. Reviewing the evidence for the hypothesis has identified a number of gaps in knowledge of the anatomy (e.g., the presence of sphincters) and physiology (e.g., the fate of indigestible food residues, pH of digestive secretions, sensory innervation, and digestive gland detoxification mechanisms) of the digestive tract as well as a paucity of recent studies on the role of epithelial chemoreceptors in prey identification and food intake.

4.
BMC Dev Biol ; 20(1): 7, 2020 04 16.
Article in English | MEDLINE | ID: mdl-32299349

ABSTRACT

BACKGROUND: Octopus vulgaris has been an iconic cephalopod species for neurobiology research as well as for cephalopod aquaculture. It is one of the most intelligent and well-studied invertebrates, possessing both long- and short-term memory and the striking ability to perform complex cognitive tasks. Nevertheless, how the common octopus developed these uncommon features remains enigmatic. O. vulgaris females spawn thousands of small eggs and remain with their clutch during their entire development, cleaning, venting and protecting the eggs. In fact, eggs incubated without females usually do not develop normally, mainly due to biological contamination (fungi, bacteria, etc.). This high level of parental care might have hampered laboratory research on the embryonic development of this intriguing cephalopod. RESULTS: Here, we present a completely parameter-controlled artificial seawater standalone egg incubation system that replaces maternal care and allows successful embryonic development of a small-egged octopus species until hatching in a laboratory environment. We also provide a practical and detailed staging atlas based on bright-field and light sheet fluorescence microscopy imaging for precise monitoring of embryonic development. The atlas has a comparative section to benchmark stages to the different scales published by Naef (1928), Arnold (1965) and Boletzky (2016). Finally, we provide methods to monitor health and wellbeing of embryos during organogenesis. CONCLUSION: Besides introducing the study of O. vulgaris embryonic development to a wider community, this work can be a high-quality reference for comparative evolutionary developmental biology.


Subject(s)
Octopodiformes/embryology , Animals , Embryonic Development/genetics , Embryonic Development/physiology , Female , Microscopy, Fluorescence
5.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(8): 1134-1144, 2019 08.
Article in English | MEDLINE | ID: mdl-31048041

ABSTRACT

The interest in understanding the capacity of aquatic invertebrates to biosynthesise omega-3 (ω3) long-chain (≥C20) polyunsaturated fatty acids (LC-PUFA) has increased in recent years. Using the common octopus Octopus vulgaris as a model species, we previously characterised a ∆5 desaturase and two elongases (i.e. Elovl2/5 and Elovl4) involved in the biosynthesis of LC-PUFA in molluscs. The aim of this study was to characterise both molecularly and functionally, two methyl-end (or ωx) desaturases that have been long regarded to be absent in most animals. O. vulgaris possess two ωx desaturase genes encoding enzymes with ∆12 and ω3 regioselectivities enabling the de novo biosynthesis of the C18 PUFA 18:2ω6 (LA, linoleic acid) and 18:3ω3 (ALA, α-linolenic acid), generally regarded as dietary essential for animals. The O. vulgaris ∆12 desaturase ("ωx2") mediates the conversion of 18:1ω9 (oleic acid) into LA, and subsequently, the ω3 desaturase ("ωx1") catalyses the ∆15 desaturation from LA to ALA. Additionally, the O. vulgaris ω3 desaturase has ∆17 capacity towards a variety of C20 ω6 PUFA that are converted to their ω3 PUFA products. Particularly relevant was the affinity of the ω3 desaturase towards 20:4ω6 (ARA, arachidonic acid) to produce 20:5ω3 (EPA, eicosapentaenoic acid), as supported by yeast heterologous expression, and enzymatic activity exhibited in vivo when paralarvae were incubated in the presence of [1-14C]20:4ω6. These results confirmed that several routes enabling EPA biosynthesis are operative in O. vulgaris whereas ARA and docosahexaenoic acid (DHA, 22:6ω3) should be considered essential fatty acids since endogenous production appears to be limited.


Subject(s)
Fatty Acid Desaturases/metabolism , Fatty Acids, Unsaturated/biosynthesis , Octopodiformes/metabolism , Animals , Arachidonic Acid/biosynthesis , Arachidonic Acid/metabolism , Docosahexaenoic Acids/biosynthesis , Docosahexaenoic Acids/metabolism , Eicosapentaenoic Acid/biosynthesis , Fatty Acid Desaturases/genetics , Linoleic Acid/biosynthesis , Octopodiformes/enzymology , alpha-Linolenic Acid/biosynthesis
7.
Front Physiol ; 8: 492, 2017.
Article in English | MEDLINE | ID: mdl-28769814

ABSTRACT

Maintenance of health and welfare of a cephalopod is essential whether it is in a research, aquaculture or public display. The inclusion of cephalopods in the European Union legislation (Directive 2010/63/EU) regulating the use of animals for scientific purposes has prompted detailed consideration and review of all aspects of the care and welfare of cephalopods in the laboratory but the information generated will be of utility in other settings. We overview a wide range of topics of relevance to cephalopod digestive tract physiology and their relationship to the health and welfare of these animals. Major topics reviewed include: (i) Feeding cephalopods in captivity which deals with live food and prepared diets, feeding frequency (ad libitum vs. intermittent) and the amount of food provided; (ii) The particular challenges in feeding hatchlings and paralarvae, as feeding and survival of paralarvae remain major bottlenecks for aquaculture e.g., Octopus vulgaris; (iii) Digestive tract parasites and ingested toxins are discussed not only from the perspective of the impact on digestive function and welfare but also as potential confounding factors in research studies; (iv) Food deprivation is sometimes necessary (e.g., prior to anesthesia and surgery, to investigate metabolic control) but what is the impact on a cephalopod, how can it be assessed and how does the duration relate to regulatory threshold and severity assessment? Reduced food intake is also reviewed in the context of setting humane end-points in experimental procedures; (v) A range of experimental procedures are reviewed for their potential impact on digestive tract function and welfare including anesthesia and surgery, pain and stress, drug administration and induced developmental abnormalities. The review concludes by making some specific recommendations regarding reporting of feeding data and identifies a number of areas for further investigation. The answer to many of the questions raised here will rely on studies of the physiology of the digestive tract.

8.
Front Physiol ; 8: 427, 2017.
Article in English | MEDLINE | ID: mdl-28670288

ABSTRACT

The culture of the common octopus (Octopus vulgaris) is promising since the species has a relatively short lifecycle, rapid growth, and high food conversion ratios. However, recent attempts at successful paralarvae culture have failed due to slow growth and high mortality rates. Establishing an optimal nutritional regime for the paralarvae seems to be the impeding step in successful culture methods. Gaining a thorough knowledge of food regulation and assimilation is essential for paralarvae survival and longevity under culture conditions. The aim of this study, then, was to elucidate the characteristic metabolic organization of octopus paralarvae throughout an ontogenic period of 12 days post-hatching, as well as assess the effect of diet enrichment with live prey containing abundant marine phospholipids. Our results showed that throughout the ontogenic period studied, an increase in anaerobic metabolism took place largely due to an increased dependence of paralarvae on exogenous food. Our studies showed that this activity was supported by octopine dehydrogenase activity, with a less significant contribution of lactate dehydrogenase activity. Regarding aerobic metabolism, the use of amino acids was maintained for the duration of the experiment. Our studies also showed a significant increase in the rate of oxidation of fatty acids from 6 days after-hatching. A low, although sustained, capacity for de novo synthesis of glucose from amino acids and glycerol was also observed. Regardless of the composition of the food, glycerol kinase activity significantly increased a few days prior to a massive mortality event. This could be related to a metabolic imbalance in the redox state responsible for the high mortality. Thus, glycerol kinase might be used as an effective nutritional and welfare biomarker. The studies in this report also revealed the important finding that feeding larvae with phospholipid-enriched Artemia improved animal viability and welfare, significantly increasing the rate of survival and growth of paralarvae.

9.
Front Physiol ; 8: 403, 2017.
Article in English | MEDLINE | ID: mdl-28674501

ABSTRACT

Ensuring the health and welfare of animals in research is paramount, and the normal functioning of the digestive tract is essential for both. Here we critically assess non- or minimally-invasive techniques which may be used to assess a cephalopod's digestive tract functionality to inform health monitoring. We focus on: (i) predatory response as an indication of appetitive drive; (ii) body weight assessment and interpretation of deviations (e.g., digestive gland weight loss is disproportionate to body weight loss in starvation); (iii) oro-anal transit time requiring novel, standardized techniques to facilitate comparative studies of species and diets; (iv) defecation frequency and analysis of fecal color (diet dependent) and composition (parasites, biomarkers, and cytology); (v) digestive tract endoscopy, but passage of the esophagus through the brain is a technical challenge; (vi) high resolution ultrasound that offers the possibility of imaging the morphology of the digestive tract (e.g., food distribution, indigestible residues, obstruction) and recording contractile activity; (vii) needle biopsy (with ultrasound guidance) as a technique for investigating digestive gland biochemistry and pathology without the death of the animal. These techniques will inform the development of physiologically based assessments of health and the impact of experimental procedures. Although intended for use in the laboratory they are equally applicable to cephalopods in public display and aquaculture.

10.
Front Physiol ; 8: 309, 2017.
Article in English | MEDLINE | ID: mdl-28567020

ABSTRACT

Nowadays, the common octopus (Octopus vulgaris) culture is hampered by massive mortalities occurring during early life-cycle stages (paralarvae). Despite the causes of the high paralarvae mortality are not yet well-defined and understood, the nutritional stress caused by inadequate diets is pointed out as one of the main factors. In this study, the effects of diet on paralarvae is analyzed through a proteomic approach, to search for novel biomarkers of nutritional stress. A total of 43 proteins showing differential expression in the different conditions studied have been identified. The analysis highlights proteins related with the carbohydrate metabolism: glyceraldehyde-3-phosphate-dedydrogenase (GAPDH), triosephosphate isomerase; other ways of energetic metabolism: NADP+-specific isocitrate dehydrogenase, arginine kinase; detoxification: glutathione-S-transferase (GST); stress: heat shock proteins (HSP70); structural constituent of eye lens: S-crystallin 3; and cytoskeleton: actin, actin-beta/gamma1, beta actin. These results allow defining characteristic proteomes of paralarvae depending on the diet; as well as the use of several of these proteins as novel biomarkers to evaluate their welfare linked to nutritional stress. Notably, the changes of proteins like S-crystallin 3, arginine kinase and NAD+ specific isocitrate dehydrogenase, may be related to fed vs. starving paralarvae, particularly in the first 4 days of development.

11.
Front Physiol ; 8: 292, 2017.
Article in English | MEDLINE | ID: mdl-28559849

ABSTRACT

The common octopus, Octopus vulgaris, is a good candidate for aquaculture but a sustainable production is still unviable due to an almost total mortality during the paralarvae stage. DNA methylation regulates gene expression in the eukaryotic genome, and has been shown to exhibit plasticity throughout O. vulgaris life cycle, changing profiles from paralarvae to adult stages. This pattern of methylation could be sensitive to small alterations in nutritional and environmental conditions during the species early development, thus impacting on its health, growth and survival. In this sense, a full understanding of the epigenetic mechanisms operating during O. vulgaris development would contribute to optimizing the culture conditions for this species. Paralarvae of O. vulgaris were cultured over 28 days post-hatching (dph) using two different Artemia sp. based diets: control and a long chain polyunsaturated fatty acids (LC-PUFA) enriched diet. The effect of the diets on the paralarvae DNA global methylation was analyzed by Methyl-Sensitive Amplification Polymorphism (MSAP) and global 5-methylcytosine enzyme-linked immunosorbent assay (ELISA) approaches. The analysis of different methylation states over the time revealed a global demethylation phenomena occurring along O. vulgaris early development being directly driven by the age of the paralarvae. A gradual decline in methylated loci (hemimethylated, internal cytosine methylated, and hypermethylated) parallel to a progressive gain in non-methylated (NMT) loci toward the later sampling points was verified regardless of the diet provided and demonstrate a pre-established and well-defined demethylation program during its early development, involving a 20% of the MSAP loci. In addition, a differential behavior between diets was also observed at 20 dph, with a LC-PUFA supplementation effect over the methylation profiles. The present results show significant differences on the paralarvae methylation profiles during its development and a diet effect on these changes. It is characterized by a process of demethylation of the genome at the paralarvae stage and the influence of diet to favor this methylation loss.

12.
Article in English | MEDLINE | ID: mdl-27840242

ABSTRACT

The present study compared the lipid composition and in vivo capability of Artemia sp. metanauplii (the main live prey used in aquaculture) and Grapsus adscensionis zoeae (as a wild zooplankton model) to metabolise unsaturated fatty acids. The two species were incubated in vivo with 0.3µM of individual [1-14C]fatty acids (FA) including 18:1n-9, 18:2n-6, 18:3n-3, 20:4n-6 (ARA), 20:5n-3 (EPA) and 22:6n-3 (DHA) bound to bovine serum albumin (BSA). Compared to metanauplii, zoeae contained twice the content of polar lipids (PL) and eight-fold the content of long-chain polyunsaturated fatty acids (LC-PUFA). Artemia sp. metanauplii showed increased short chain fatty acid de novo synthesis from beta-oxidation of [1-14C]LC-PUFA, preferentially DHA. Of the LC-PUFA, DHA showed the highest esterification rate into Artemia sp. triacylglycerols. In contrast, in Grapsus zoeae [1-14C]DHA displayed the highest transformation rate into longer chain-length FAs and was preferentially esterified into PL. EPA and ARA, tended to be more easily incorporated and/or retained than DHA in Artemia sp. Moreover, both EPA and ARA were preferentially esterified into Artemia PL, which theoretically would favour their bioavailability to the larvae. In addition to the inherent better nutritional value of Grapsus zoeae due to their intrinsic lipid composition, the changes taking place after the lipid incorporation, point at two distinct models of lipid metabolism that indicate zoeae as a more suitable prey than Artemia sp. for the feeding of marine animals.


Subject(s)
Artemia/metabolism , Fatty Acids, Unsaturated/metabolism , Food Chain , Animals , Biological Transport , Esterification , Fatty Acids, Unsaturated/chemistry , Larva/growth & development
13.
Article in English | MEDLINE | ID: mdl-27267253

ABSTRACT

The objective of the present study was to characterise the fatty acid (FA) profiles of the major phospholipids, of Octopus vulgaris and Sepia officinalis hatchlings, namely phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylinositol (PI) and phosphatidylethanolamine (PE); and to evaluate the capability of both cephalopod species on dietary phospholipid remodelling. Thus, O. vulgaris and S. officinalis hatchlings were in vivo incubated with 0.3µM of L-∝-1-palmitoyl-2-[1-(14)C]arachidonyl-PC or L-∝-1-palmitoyl-2-[1-(14)C]arachidonyl-PE. Octopus and cuttlefish hatchlings phospholipids showed a characteristic FA profiles with PC presenting high contents of 16:0 and 22:6n-3 (DHA); PS having high 18:0, DHA and 20:5n-3 (EPA); PI a high content of saturated FA; and PE showing high contents of DHA and EPA. Interestingly, the highest content of 20:4n-6 (ARA) was found in PE rather than PI. Irrespective of the phospholipid in which [1-(14)C]ARA was initially bound (either PC or PE), the esterification pattern of [1-(14)C]ARA in octopus lipids was similar to that found in their tissues with high esterification of this FA into PE. In contrast, in cuttlefish hatchlings [1-(14)C]ARA was mainly recovered in the same phospholipid that was provided. These results showed a characteristic FA profiles in the major phospholipids of the two species, as well as a contrasting capability to remodel dietary phospholipids, which may suggest a difference in phospholipase activities.


Subject(s)
Octopodiformes/metabolism , Phospholipids/chemistry , Phospholipids/metabolism , Sepia/metabolism , Acylation , Animals , Fatty Acids/chemistry , Fatty Acids/metabolism
14.
J Biotechnol ; 149(3): 209-14, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20005909

ABSTRACT

The culture of common octopus (Octopus vulgaris), one important candidate to the aquaculture diversification, faces significant difficulties, mainly related with an inadequate first development stages diet. A mathematical model integrating disperse information on the nutrient composition throughout the species ontogenic development as well as on the effects of broodstock feeding and diet composition data of O. vulgaris, allowed us to predict the time evolution of paralarvae nutritional composition in terms of protein and lipid fractions and to design an optimal diet composition with the objective to ensure the maximal survival. The optimization routine showed that a diet based on the spider crab (Maja squinado) zoea composition is the most suitable for reaching the best survival rates. Results are verified by comparison with available experimental data. The obtained results and the prospective developments are a good example of how the systemic, quantitative model based approach can be used to analyse and contribute to the understanding of complex biological systems.


Subject(s)
Aquaculture , Feeding Behavior , Models, Biological , Octopodiformes/physiology , Animals , Climate Change
15.
J Neurosci Methods ; 153(2): 230-8, 2006 Jun 15.
Article in English | MEDLINE | ID: mdl-16337275

ABSTRACT

Most studies aimed at exploring the molecular and cellular properties of plasma membranes in neural tissues make use of cell lines. However, cell membrane lipid composition of cell lines is notably different from that of brain tissues where they presumably derive from. Using septal-derived SN56 cells and hippocampal-derived HT22 cells, we demonstrated that cell lines exhibit lower contents of saturated (18:0) and long polyunsaturated fatty acids (PUFA; 20:4n-6 and especially 22:6n-3), as well as higher monounsaturated fatty acid contents (mainly 18:1n-9), compared to mouse brain. Also, cell lines exhibited higher contents of sterol esters and lower contents of cholesterol and phospholipids, especially phosphatidylethanolamine and phosphatidylserine. We have also evaluated the effects of different (n-3/n-6) PUFA enrichments on fatty acid and phospholipid contents in these cell lines. Our results show that enrichment of culture medium with 22:6n-3 and 20:4n-6 in a 70/30 proportion during 48 h, using fat-free bovine serum albumin as vehicle, successfully readjusted fatty acid profiles in cell line-polar lipids to values found in natural nerve cells. Interestingly, no differences in cell survival were observed upon enrichment. The generalization of these methodologies would allow a more feasible adaptation of cellular models to the study of in vivo nerve physiology.


Subject(s)
Fatty Acids, Unsaturated/administration & dosage , Neurons/drug effects , Phospholipids/metabolism , Analysis of Variance , Animals , Cell Line, Transformed , Cell Survival/drug effects , Dose-Response Relationship, Drug , Mice , Neurons/metabolism
16.
Comp Biochem Physiol B Biochem Mol Biol ; 139(2): 209-16, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15465667

ABSTRACT

To establish the changes which occur during embryogenesis and early larvae development, eggs, yolk-sac larvae (one day old larvae) and absorbed yolk-sac larvae (three day old larvae) of white sea bream were examined for lipid class and fatty acid composition. The development was characterized by a decrease in all lipid classes with the exception of phosphatidylserine (PS) and fatty free acids (FFA) which increased, and sphingomyelin (SM) which remained unchanged. The changes observed in lipid class content and the decrease in fatty acids in total lipid (TL) reflect the utilization and mobilization of lipids during both embryogenesis and early larvae development. Fluctuations in the relative composition of fatty acids in phosphatidylcholine (PC) during development suggest a selective bulk uptake and catabolism of fatty acids in this lipid class. Unlike PC, catabolism of triacylglycerol (TG) fatty acid appears to be non-selective. During development, the decrease in levels of polyunsaturated fatty acids (PUFA) eicosapentaenoic (20:5n-3, EPA) and docosahexaenoic (22:6n-3, DHA) in total lipid denotes their utilization as energy substrate by Diplodus sargus larvae.


Subject(s)
Fatty Acids/analysis , Larva/growth & development , Lipid Metabolism , Sea Bream/embryology , Zygote/growth & development , Age Factors , Animals , Growth and Development , Lipids/analysis , Lipids/classification , Sea Bream/growth & development , Sea Bream/metabolism
17.
Comp Biochem Physiol B Biochem Mol Biol ; 138(1): 91-102, 2004 May.
Article in English | MEDLINE | ID: mdl-15142540

ABSTRACT

Total lipids (TL), lipid classes, and their associated fatty acids from muscle and liver of captive and wild mature female broodstocks were investigated in order to estimate the fatty acid requirements of white seabream (Diplodus sargus). The results showed that the percentage of triacylglycerol was higher in liver and muscle of captive fish than in wild fish. The distribution of phospholipid classes in liver and muscle of both fish groups was similar, phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol being the predominant lipid classes. The general pattern of fatty acid distribution in total lipid of liver and muscle from captive and wild fish was similar. However, the relative percentage of specific fatty acids differed in captive and wild fish. The most noteworthy difference was the lower proportion of arachidonic acid (20:4n-6, AA) and the higher proportion of eicosapentaenoic acid (20:5n-3, EPA) in liver and muscle of captive fish with respect to those of wild fish. The proportion of docosahexaenoic acid (22:6n-3, DHA) did not differ between the two fish groups. The differences in EPA and AA proportions between captive and wild fish implied that captive fish presented a higher EPA/AA ratio and a lower DHA/EPA ratio than wild fish. In general terms, in both liver and muscle, the differences in fatty acid composition observed for TL were extended to all lipid classes. The results suggest that the different AA, EPA and DHA proportions in liver and muscle between captive and wild broodstocks are attributed to different levels of these fatty acids in broodstock diets.


Subject(s)
Aging/metabolism , Animals, Wild/metabolism , Fatty Acids/metabolism , Lipids/analysis , Liver/metabolism , Muscles/metabolism , Sea Bream/metabolism , Animals , Fatty Acids/analysis , Female , Lipid Metabolism , Liver/chemistry , Muscles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...