Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38399437

ABSTRACT

Previous studies provided evidence of the benefits of omega-3 polyunsaturated fatty acids (ω-3 PUFA) on the cardiovascular system and inflammation. However, its possible effect on skeletal muscle is unknown. This study aimed to evaluate whether ω-3 PUFA reverses the dysregulation of metabolic modulators in the skeletal muscle of rats on a high-fat obesogenic diet. For this purpose, an animal model was developed using male Wistar rats with a high-fat diet (HFD) and subsequently supplemented with ω-3 PUFA. Insulin resistance was assessed, and gene and protein expression of metabolism modulators in skeletal muscle was also calculated using PCR-RT and Western blot. Our results confirmed that in HFD rats, zoometric parameters and insulin resistance were increased compared to SD rats. Furthermore, we demonstrate reduced gene and protein expression of peroxisome proliferator-activated receptors (PPARs) and insulin signaling molecules. After ω-3 PUFA supplementation, we observed that glucose (24.34%), triglycerides (35.78%), and HOMA-IR (40.10%) were reduced, and QUICKI (12.16%) increased compared to HFD rats. Furthermore, in skeletal muscle, we detected increased gene and protein expression of PPAR-α, PPAR-γ, insulin receptor (INSR), insulin receptor substrate 1 (ISR-1), phosphatidylinositol-3-kinase (PI3K), and glucose transporter 4 (GLUT-4). These findings suggest that ω-3 PUFAs decrease insulin resistance of obese skeletal muscle.

2.
Metabolites ; 13(12)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38132871

ABSTRACT

Metabolic syndrome (MetS) is a complex disease that includes metabolic and physiological alterations in various organs such as the heart, pancreas, liver, and brain. Reports indicate that blackberry consumption, such as maqui berry, has a beneficial effect on chronic diseases such as cardiovascular disease, obesity, and diabetes. In the present study, in vivo and in silico studies have been performed to evaluate the molecular mechanisms implied to improve the metabolic parameters of MetS. Fourteen-day administration of maqui berry reduces weight gain, blood fasting glucose, total blood cholesterol, triacylglycerides, insulin resistance, and blood pressure impairment in the diet-induced MetS model in male and female rats. In addition, in the serum of male and female rats, the administration of maqui berry (MB) improved the concentration of MDA, the activity of SOD, and the formation of carbonyls in the group subjected to the diet-induced MetS model. In silico studies revealed that delphinidin and its glycosylated derivatives could be ligands of some metabolic targets such as α-glucosidase, PPAR-α, and PPAR-γ, which are related to MetS parameters. The experimental results obtained in the study suggest that even at low systemic concentrations, anthocyanin glycosides and aglycones could simultaneously act on different targets related to MetS. Therefore, these molecules could be used as coadjuvants in pharmacological interventions or as templates for designing new multitarget molecules to manage patients with MetS.

3.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37895861

ABSTRACT

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) with no curative treatment, and the available therapies aim to modify the course of the disease. It has been demonstrated that extracts of Tagetes lucida have immunomodulatory and neuroprotective effects. This work induced motor damage and neuroinflammation in male BALB/c mice by oral administration of cuprizone (CPZ) (40 mg/kg) for five weeks. In addition, the extracts and coumarins of Tagetes lucida (25 mg/kg) were used to control these damage variables; during the experiment, animals were subject to behavioral tests, and at the end of 5 weeks, mice from each group were used to measure the integrity of biological barriers (brain, kidneys, and spleen) through the extravasation test with blue Evans dye. In another group of animals, the ELISA method measured the brain concentrations of IL-1ß, IL-4, IL-10, and TNF-α. The results presented here allow us to conclude that the extracts and coumarins IC, HN, PE, DF, and SC of Tagetes lucida exert a neuroprotective effect by controlling the motor damage and neuroinflammation by increasing the expression of IL-4 and IL-10 and decreasing IL-1ß and TNF-α; notably, these treatments also protect organs from vascular permeability increase, mainly the BBB, in mice with CPZ-induced experimental encephalomyelitis (VEH * p < 0.05). However, more studies must be carried out to elucidate the molecular mechanisms of the pharmacological effects of this Mexican medicinal plant.

4.
Pharmaceutics ; 15(9)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37765314

ABSTRACT

The aim of this work was to evaluate the vasorelaxant and antihypertensive effects of a standardized precipitate of the hydroalcoholic extract from Agastache mexicana (PPAm), comprising ursolic acid, oleanolic acid, acacetin, luteolin and tilianin, among others. In the ex vivo experiments, preincubation with L-NAME (nonspecific inhibitor of nitric oxide synthases) reduced the relaxation induced by PPAm; nevertheless, preincubation with indomethacin (nonspecific inhibitor of cyclooxygenases) did not generate any change in the vasorelaxation, and an opposed effect was observed to the contraction generated by CaCl2 addition. Oral administration of 100 mg/kg of PPAm induced a significant acute decrease in diastolic (DBP) and systolic (SBP) blood pressure in spontaneously hypertensive rats, without changes in heart rate. Additionally, PPAm showed a sustained antihypertensive subacute effect on both DBP and SBP for 10 days compared to the control group. On the other hand, human umbilical vein cells treated with 10 µg/mL of PPAm showed a significant reduction (p < 0.05) in intracellular adhesion molecule-1, compared to the control, but not on vascular cell adhesion molecule-1. In conclusion, PPAm induces a significant antihypertensive effect in acute- and subacute-period treatments, due to its direct vasorelaxant action on rat aortic rings through NO production and Ca2+ channel blockade.

5.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37111292

ABSTRACT

Plantago australis Lam. Subsp. hirtella (Kunth) Rahn is a medicinal plant used as a diuretic, anti-inflammatory, antibacterial, throat cancer treatment and for the control of diabetes. P. australis was collected in the state of Morelos, México. The hydroalcoholic extract (HAEPa) of P. australis was obtained by maceration and concentrated in vacuo. Once dry, it was evaluated through an oral glucose tolerance test (OGTT) in normoglycemic mice and in a non-insulin-dependent diabetic mice model. The expression of PPARγ and GLUT-4 mRNA was determined by rt-PCR, and GLUT-4 translocation was confirmed by confocal microscopy. The toxicological studies were conducted in accordance with the guidelines suggested by the OECD, sections 423 and 407, with some modifications. HAEPa significantly decreased glycemia in OGTT curves, as well as in the experimental diabetes model compared to the vehicle group. In vitro tests showed that HAEPa induced an α-glucosidase inhibition and increased PPARγ and GLUT-4 expression in cell culture. The LD50 of HAEPa was greater than 2000 mg/kg, and sub-chronic toxicity studies revealed that 100 mg/kg/day for 28 days did not generate toxicity. Finally, LC-MS analysis led to the identification of verbascoside, caffeic acid and geniposidic acid, and phytochemical approaches allowed for the isolation of ursolic acid, which showed significant PPARγ overexpression and augmented GLUT-4 translocation. In conclusion, HAEPa induced significant antidiabetic action by insulin sensitization through PPARγ/GLUT-4 overexpression.

6.
Nutr Neurosci ; 26(4): 275-289, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35282801

ABSTRACT

Inflammation and oxidative stress are critical events involved in neurodegeneration. In animal models, it has been shown that chronic consumption of a hypercaloric diet, which leads to inflammatory processes, affects the hippocampus, a brain region fundamental for learning and memory processes. In addition, advanced age and menopause are risk factors for neurodegeneration. Hormone replacement therapy (HRT) ameliorates menopause symptoms. Tibolone (TB), a synthetic hormone, exerts estrogenic, progestogenic and androgenic effects on different tissues. We aimed to determine the effect of short-term TB administration on oxidative stress and inflammation markers in the hippocampus of ovariectomized rats fed a high-fat-and-fructose diet (HFFD). Adult female rats were ovariectomized (OVX) and fed standard diet or HFFD-consisting of 10% lard supplemented chow and 20% high-fructose syrup in the drinking water-and administered vehicle or TB (1 mg/kg for seven days). Finally, we administered hormone receptor antagonists (MPP, RU486 or FLU) to each of the OVX + HFFD + TB groups. Bodyweight, triglycerides and cholesterol, oxidative stress and inflammation markers, and the activity and expression of antioxidant enzymes were quantified in the hippocampus of each experimental group. We observed that short-term TB administration significantly reduced body weight, AGEs, MDA levels, increased SOD and GPx activity, improved GSH/GSSG ratio, and reduced IL-6 and TNF-α. Our findings suggest that short-term administration of TB decreases oxidative stress and reduces inflammation caused by HFFD and early estrogenic decline. These effects occurred via estrogen receptor alpha.


Subject(s)
Fructose , Oxidative Stress , Rats , Female , Animals , Fructose/adverse effects , Inflammation/metabolism , Diet, High-Fat/adverse effects , Body Weight , Hippocampus/metabolism , Hormones/metabolism , Hormones/pharmacology
7.
Life (Basel) ; 12(11)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36362842

ABSTRACT

BACKGROUND: Chronic or low-grade inflammation is a process where various immune cells are recruited from the periphery into adipose tissue. This event gives rise to localised inflammation, in addition to having a close interaction with cardiometabolic pathologies where the mediation of orphan receptors is observed. The aim of this study was to analyse the participation of the orphan receptors GPR21, GPR39, GPR82 and GPR6 in a chronic inflammatory process in 3T3-L1 cells. The 3T3-L1 cells were stimulated with TNF-α (5 ng/mL) for 60 min as an inflammatory model. Gene expression was measured by RT-qPCR. RESULTS: We showed that the inflammatory stimulus of TNF-α in adipocytes decreased the expression of the orphan receptors GPR21, GPR26, GPR39, GPR82 and GPR6, which are related to low-grade inflammation. CONCLUSIONS: Our results suggest that GPR21 and GPR82 are modulated by glycine, it shows a possible protective role in the presence of an inflammatory environment in adipocytes, and they could be a therapeutic target to decrease the inflammation in some diseases related to low-grade inflammation such as diabetes, obesity and metabolic syndrome.

8.
Plants (Basel) ; 11(20)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36297813

ABSTRACT

Tagetes lucida Cav., is a medicinal plant used in Mexico to alleviate different disorders related to alterations of the central nervous system, such as behaviors associated with psychosis. The present work evaluated the effect of different extracts separated from this plant, TlHex, TlEA, TlMet, and TlAq, and of two isolated coumarins, herniarin (HN) and dimethylfraxetin (DF), on haloperidol-induced catalepsy (HAL), and psychotic behaviors provoked with a glutamatergic antagonist, ketamine (KET) on ICR mice. The extracts TlEA, TlAq, and the isolated compounds HN and DF, induced an increment of the cataleptic effect of HAL. Schizophrenia-like symptoms caused by KET were analyzed through the behavior of the animals in the open field (OFT), forced swimming (FST), passive avoidance test (PAT), and social interaction test (SIT). Treatments derived from T. lucida could interact with this substance in all tests except for FST, in which only TlMet blocks its activity. Mainly, TlEA, TlAq, HN, and DF, blocked the effects of KET on stereotyped behavior, hyperlocomotion, cognitive impairment, and detriment in the social interaction of rodents. T. lucida interacted with dopaminergic and glutamatergic systems.

9.
Int J Mol Sci ; 23(16)2022 Aug 14.
Article in English | MEDLINE | ID: mdl-36012387

ABSTRACT

Moonlighting proteins are those capable of performing more than one biochemical or biophysical function within the same polypeptide chain. They have been a recent focus of research due to their potential applications in the health, pharmacological, and nutritional sciences. Among them, some ribosomal proteins involved in assembly and protein translation have also shown other functionalities, including inhibiting infectious bacteria, viruses, parasites, fungi, and tumor cells. Therefore, they may be considered antimicrobial peptides (AMPs). However, information regarding the mechanism of action of ribosomal proteins as AMPs is not yet fully understood. Researchers have suggested that the antimicrobial activity of ribosomal proteins may be associated with an increase in intracellular reactive oxidative species (ROS) in target cells, which, in turn, could affect membrane integrity and cause their inactivation and death. Moreover, the global overuse of antibiotics has resulted in an increase in pathogenic bacteria resistant to common antibiotics. Therefore, AMPs such as ribosomal proteins may have potential applications in the pharmaceutical and food industries in the place of antibiotics. This article provides an overview of the potential roles of ribosomes and AMP ribosomal proteins in conjunction with their potential applications.


Subject(s)
Anti-Infective Agents , Ribosomal Proteins , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Bacteria , Ribosomes
10.
J Med Food ; 25(6): 588-596, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35708636

ABSTRACT

Insulin secretion and GLUT4 expression are two critical events in glucose regulation. The receptors G-protein-coupled receptor 40 (GPR40) and peroxisome proliferator-activated receptor-gamma (PPARγ) modulate these processes, and they represent potential therapeutic targets for new antidiabetic agent's design. Cucurbita ficifolia fruit is used in traditional medicine for diabetes control. Previous studies demonstrated several effects: a hypoglycemic effect mediated by an insulin secretagogue action, antihyperglycemic effect, and promoting liver glycogen storage. Anti-inflammatory and antioxidant effects were also reported. Moreover, some of its phytochemicals have been described, including d-chiro-inositol. However, to understand these effects integrally, other active principles should be investigated. The aim was to perform a chemical fractionation guided by bioassay to isolate and identify other compounds from C. ficifolia fruit that explain its hypoglycemic action as insulin secretagogue, its antihyperglycemic effect by PPARγ activation, and on liver glycogen storage. Three different preparations of C. ficifolia were tested in vivo. Ethyl acetate fraction derived from aqueous extract showed antihyperglycemic effect in an oral glucose tolerance test and was further fractioned. The insulin secretagogue action was tested in RINm5F cells. For the PPARγ activation, C2C12 myocytes were treated with the fractions, and GLUT4 mRNA expression was measured. Chemical fractionation resulted in the isolation and identification of ß-sitosterol and 4-hydroxybenzoic acid (4-HBA), which increased insulin secretion, GLUT4, PPARγ, and adiponectin mRNA expression, in addition to an increase in glycogen storage. 4-HBA exhibited an antihyperglycemic effect, while ß-sitosterol showed hypoglycemic effect, confirming the wide antidiabetic related results we found in our in vitro models. An in silico study revealed that 4-HBA and ß-sitosterol have potential as dual agonists on PPARγ and GPR40 receptors. Both compounds should be considered in the development of new antidiabetic drug development.


Subject(s)
Cucurbita , Diabetes Mellitus, Experimental , Animals , Cucurbita/chemistry , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/therapeutic use , Insulin/metabolism , Liver Glycogen , PPAR gamma/agonists , PPAR gamma/genetics , Parabens , Plant Extracts/chemistry , RNA, Messenger , Secretagogues/therapeutic use , Sitosterols
11.
J Ethnopharmacol ; 296: 115492, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-35724746

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Bocconia arborea S. Watson (Papaveraceae) is known as "palo llora sangre" and is used in Mexican traditional medicine for the treatment of infections, it is also used as anxiolytic, analgesic, and antidiabetic, among others. AIM OF THE STUDY: to evaluate the antinociceptive and gastroprotective activities of extracts from B. arborea and dihydrosanguinarine (DHS) in murine models. MATERIALS AND METHODS: Organic extracts [hexane (HEX), dichloromethane (DCM) and methanol (MeOH)] were obtained by maceration. DHS was isolated and purified from HEX and DCM by precipitation and chromatographic column, respectively. Organic extracts and DHS were evaluated to determine their antinociceptive effect using formalin test in murine model. Also, the ambulatory effect of the HEX and DHS was determined in Open field test. The possible mechanism of action of DHS was explored in the presence of naltrexone (NTX, 1 mg/kg, i.p.), and picrotoxin (PTX, 1 mg/kg, i.p.). Gastric damage as possible adverse effect or gastroprotection were also investigated. Whereas DHS acute toxicological study was done, and 100 mg/kg of DHS was examined by electroencephalographic (EEG) analysis to discard neurotoxic effects. RESULTS: The B. arborea extracts significantly showed effects in both neurogenic and inflammatory phases of the formalin test, where the HEX extract reached the major antinociceptive effect. A significant and dose-response (10, 30, and 100 mg/kg) antinociceptive activity was observed with the HEX (ED50 = 69 mg/kg) and DHS (ED50 = 85 mg/kg) resembling the effect of the reference analgesic drug tramadol (30 mg/kg). The significant effect of DHS was inhibited in the presence of NTX and PTX. Neither the extracts or DHS produced sedative effects or gastric damage per se at antinociceptive doses. The EEG analysis demonstrated central depressant activity but not sedative or neurotoxic effects at the highest antinociceptive dosage tested, and LD50 is higher than 2000 mg/kg. CONCLUSIONS: HEX, DCM, and MeOH extracts showed significant antinociceptive activity, and DHS was identified as one of bioactive compounds without producing sedative, neurotoxic or gastric damage effects, as possible adverse effects reported for analgesic drugs. A role of opioid and GABAA neurotransmission appears to be involved as mechanisms of action of DHS, suggesting its potential for pain therapy and reinforcing the traditional use of B. arborea.


Subject(s)
Pain , Papaveraceae , Analgesics/therapeutic use , Analgesics/toxicity , Animals , Benzophenanthridines , Disease Models, Animal , Isoquinolines , Methanol/therapeutic use , Mice , Pain/drug therapy , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
12.
Bioorg Med Chem Lett ; 70: 128804, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35598791

ABSTRACT

In current work, we prepared a series of nine 4-benzyloxy-5-benzylidene-1,3-thiazolidine-2,4-diones using a two-step pathway. Compounds 1-9 were tested in vitro using a set of three proteins recognized as important targets in diabetes and related diseases: PPARα, PPARγ, and GLUT-4. Compounds 1-3, 5, and 7 showed significant increases in the mRNA expression of PPARγ and GLUT-4, whereas compounds 1-3 did it over PPARα. Compounds 1-3 were identified as a dual PPAR α/γ modulators and were selected for evaluating the in vivo antidiabetic action at 100 mg/kg dose, being orally actives and decreasing blood glucose concentration in a hyperglycemic mice model, as well as reducing the triacylglycerides levels in normolipidemic rats. Docking and molecular dynamics studies were conducted to clarify the dual effect and binding mode of compounds 1-3 on both PPARs. Compounds 2 and 3 exhibited robust in vitro and in vivo efficacy and could be considered dual PPAR modulators with antidiabetic and antidyslipidemic effects.


Subject(s)
Hypoglycemic Agents , PPAR gamma , Animals , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Lipids , Mice , PPAR alpha/metabolism , PPAR gamma/metabolism , Rats , Thiazolidines/pharmacology
13.
Pharmaceuticals (Basel) ; 15(1)2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35056159

ABSTRACT

Four isobutyric acids (two nitro and two acetamido derivatives) were prepared in two steps and characterized using spectral analysis. The mRNA concentrations of PPARγ and GLUT-4 (two proteins documented as key diabetes targets) were increased by 3T3-L1 adipocytes treated with compounds 1-4, but an absence of in vitro expression of PPARα was observed. Docking and molecular dynamics studies revealed the plausible interaction between the synthesized compounds and PPARγ. In vivo studies established that compounds 1-4 have antihyperglycemic modes of action associated with insulin sensitization. Nitrocompound 2 was the most promising of the series, being orally active, and one of multiple modes of action could be selective PPARγ modulation due to its extra anchoring with Gln-286. In conclusion, we demonstrated that nitrocompound 2 showed strong in vitro and in vivo effects and can be considered as an experimental antidiabetic candidate.

14.
Nat Prod Res ; 36(4): 1123-1128, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33342288

ABSTRACT

Agave marmorata Roezl is an endemic succulent specie from the Oaxaca-Puebla area of Mexico. This plant is a medicinal recourse and contain a rich variety of saponins-type compounds with multiples biological effects. Some of them have been shown to be anticancer, antibacterial, or having anti-inflammatory and immunoregulation effects. This paper is the first scientific report to describe the pharmacological activity and chemistry of the saponin smilagenin-3-O-[ß-D-glucopyranosyl (1→2)-ß-D-galactopyranoside] (1), isolated from Agave marmorata Roezl. Saponin (1) displayed immunomodulating activity when assayed on cultured macrophages. It inhibits NO production (EC50 = 5.6 mg/ml, Emax = 101%), as well as NF-κB expression (EC50 = 0.086 mg/ml, Emax = 90%). Using bioinformatic molecular docking, we identified a new smilagenin- PI3K kinase interaction site.


Subject(s)
Agave , NF-kappa B/antagonists & inhibitors , Saponins , Transcription Factor AP-1/antagonists & inhibitors , Agave/chemistry , Molecular Docking Simulation , Molecular Structure , Saponins/chemistry , Saponins/pharmacology
15.
Eur J Pharmacol ; 907: 174244, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34116041

ABSTRACT

The current manuscript describes two molecules that were designed against PPARγ and GPR40 receptors. The preparation of the compounds was carried out following a synthetic route of multiple steps. Then, the mRNA expression levels of PPARγ, GLUT4, and GPR40 induced by compounds were measured and quantified in adipocyte and ß-pancreatic cell cultures. The synthesized compound 1 caused an increase in the 4-fold expression of mRNA of PPARγ regarding the control and had a similar behavior to the pioglitazone, while compound 2 only increased 2-fold the expression. Also, the compound 1 increased to 7-fold the GLUT4 expression levels, respect to the control and twice against the pioglitazone. On the other hand, the 1 increase 3-fold GPR40 expression, and compound 2 had a minor activity. Besides, 1 and 2 showed a moderated increase on insulin secretion and calcium mobilization versus the glibenclamide. Based on the molecular docking studies, the first compound had a similar conformation to co-crystal ligands into the binding site of both receptors. The poses were docked keeping the most important interactions and maintaining the interaction along the Molecular Dynamics simulation (20 ns). Finally, compound (1) showed an antihyperglycemic effect at 5 mg/kg, however at higher doses of 25 mg/kg it controlled blood glucose levels associated with feeding intake and without showing the adverse effects associated with insulin secretagogues (hypoglycemia). For these reasons, we have concluded that molecule 1 acts as a dual PPARγ and GPR40 agonist offering a better glycemic control than current treatments.


Subject(s)
Hypoglycemic Agents , Diabetes Mellitus, Type 2 , Insulin , Pioglitazone/pharmacology , Thiazolidinediones/pharmacology
16.
PeerJ ; 9: e11305, 2021.
Article in English | MEDLINE | ID: mdl-34055478

ABSTRACT

BACKGROUND: High fructose exposure induces metabolic and endocrine responses in adipose tissue. Recent evidence suggests that microRNAs in extracellular vesicles are endocrine signals secreted by adipocytes. Fructose exposure on the secretion of microRNA by tissues and cells is poorly studied. Thus, the aim of this study was to evaluate the effect of fructose exposure on the secretion of selected microRNAs in extracellular vesicles from 3T3-L1 cells and plasma from Wistar rats. METHODS: 3T3-L1 cells were exposed to 550 µM of fructose or standard media for four days, microRNAs levels were determined in extracellular vesicles of supernatants and cells by RT-qPCR. Wistar rats were exposed to either 20% fructose drink or tap water for eight weeks, microRNAs levels were determined in extracellular vesicles of plasma and adipose tissue by RT-qPCR. RESULTS: This study showed that fructose exposure increased the total number of extracellular vesicles released by 3T3-L1 cells (p = 0.0001). The levels of miR-143-5p were increased in extracellular vesicles of 3T3-L1 cells exposed to fructose (p = 0.0286), whereas miR-223-3p levels were reduced (p = 0.0286). Moreover, in plasma-derived extracellular vesicles, miR-143-5p was higher in fructose-fed rats (p = 0.001), whereas miR-223-3p (p = 0.022), miR-342-3p (p = 0.0011), miR-140-5p (p = 0.0129) and miR-146b-5p (p = 0.0245) were lower. CONCLUSION: Fructose exposure modifies the levels of microRNAs in extracellular vesicles in vitro and in vivo. In particular, fructose exposure increases miR-143-5p, while decreases miR-223-3p and miR-342-3p.

17.
Inflamm Res ; 70(5): 605-618, 2021 May.
Article in English | MEDLINE | ID: mdl-33877377

ABSTRACT

OBJECTIVE: To determine the involvement of TNF-α and glycine receptors in the inhibition of pro-inflammatory adipokines in 3T3-L1 cells. METHODS: RT-PCR evidenced glycine receptors in 3T3-L1 adipocytes. 3T3-L1 cells were transfected with siRNA for the glycine (Glrb) and TNF1a (Tnfrsf1a) receptors and confirmed by confocal microscopy. Transfected cells were treated with glycine (10 mM). The expressions of TNF-α and IL-6 mRNA were measured by qRT-PCR, while concentrations were quantified by ELISA. RESULTS: Glycine decreased the expression and concentration of TNF-α and IL-6; this effect did not occur in the absence of TNF-α receptor due to siRNA. In contrast, glycine produced only slight changes in the expression of TNF-α and IL-6 in the absence of the glycine receptor due to siRNA. A docking analysis confirmed the possibility of binding glycine to the TNF-α1a receptor. CONCLUSION: These findings support the idea that glycine could partially inhibit the binding of TNF-α to its receptor and provide clues about the mechanisms by which glycine inhibits the secretion of pro-inflammatory adipokines in adipocytes through the TNF-α receptor.


Subject(s)
Adipocytes/metabolism , Cytokines/metabolism , Glycine/pharmacology , Receptors, Tumor Necrosis Factor, Type II/antagonists & inhibitors , Receptors, Tumor Necrosis Factor, Type I/antagonists & inhibitors , 3T3-L1 Cells , Adiponectin/genetics , Animals , Cytokines/genetics , Gene Expression , Mice , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , Receptors, Glycine/genetics , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type II/genetics
18.
J Ethnopharmacol ; 273: 113948, 2021 Jun 12.
Article in English | MEDLINE | ID: mdl-33610712

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Achillea millefolium L. (Asteraceae), known as yarrow (milenrama), is a plant used in Mexican traditional medicine for the treatment of hypertension, diabetes, and related diseases. AIM: To determine the vasorelaxant and antihypertensive effect of A. millefollium and to isolate the main bioactive antihypertensive agents. MATERIALS AND METHODS: Organic (hexane, dichloromethane and methanol) and hydro-alcohol (Ethanol-H2O: 70:30) extracts obtained from flowers, leaves and stems were evaluated on isolated aorta rat rings with and without endothelium to determine their vasorelaxant effect. Hexane extract from flowers (HEAmF) was studied to evaluate its antihypertensive effect on spontaneously hypertensive rats (SHR). From HEAmF, bioactive compounds were obtained by bio-guided phytochemical separation through chromatography. RESULTS: Organic extracts showed the best vasorelaxant activity. Hexane extract from flowers was the most potent and efficient ex vivo vasorelaxant agent, showing significant decrease of systolic and diastolic blood pressure in SHR (p < 0.05). Phytochemical separation of HEAmF yielded two epimeric sesquiterpene lactones: leucodin (1) and achillin (2), the major components of the extract. Both 1 and 2 showed similar vasorelaxant action ex vivo (p < 0.05), and their effects where modified by L-NAME (10 µM, nitric oxide synthase inhibitor), by ODQ (1 µM, soluble guanylyl cyclase inhibitor), and also relaxed the contraction induced by KCl (80 mM). Finally, 1 and 2 intragastric administration (50 mg/kg) decreased systolic and diastolic blood pressure in SHR. CONCLUSIONS: Achillea millefolium showed antihypertensive and vasorelaxant effects, due mainly to leucodin and achillin (epimers). Both compounds showed antihypertensive activity by vasorelaxation putatively by endothelium-dependent NO release and cGMP increase, as well as by calcium channels blockade.


Subject(s)
Achillea/chemistry , Antihypertensive Agents/pharmacology , Calcium Channel Blockers/pharmacology , Plant Extracts/pharmacology , Sesquiterpenes/pharmacology , Vasodilator Agents/pharmacology , Animals , Antihypertensive Agents/therapeutic use , Aorta/drug effects , Blood Pressure/drug effects , Calcium Channel Blockers/therapeutic use , Calcium Channels/metabolism , Computer Simulation , Heart Rate/drug effects , Male , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/chemistry , Oxadiazoles/pharmacology , Plant Extracts/therapeutic use , Quinoxalines/pharmacology , Rats, Inbred SHR , Rats, Wistar , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Sesquiterpenes/therapeutic use , Vasodilator Agents/therapeutic use
19.
Can J Physiol Pharmacol ; 99(9): 935-942, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33596122

ABSTRACT

α-Amyrin, a natural pentacyclic triterpene, has an antihyperglycemic effect in mice and dual PPARδ/γ action in 3T3-L1 adipocytes, and potential in the control of type 2 diabetes (T2D). About 80% of glucose uptake occurs in skeletal muscle cells, playing a significant role in insulin resistance (IR) and T2D. Peroxisome-proliferator activated receptors (PPARs), in particular PPARδ and PPARγ, are involved in the regulation of lipids and carbohydrates and, along with adenosine-monophosphate (AMP) - activated protein kinase (AMPK) and protein kinase B (Akt), are implicated in translocation of glucose transporter 4 (GLUT4); however, it is still unknown whether α-amyrin can affect these pathways in skeletal muscle cells. Our objective was to determine the action of α-amyrin in PPARδ, PPARγ, AMPK, and Akt in C2C12 myoblasts. The expression of PPARδ, PPARγ, fatty acid transporter protein (FATP), and GLUT4 was quantified using reverse transcription quantitative PCR and Western blot. α-Amyrin increased these markers along with phospho-AMPK (p-AMPK) but not p-Akt. Molecular docking showed that α-amyrin acts as an AMPK-allosteric activator, and may be related to GLUT4 translocation, as evidenced by confocal microscopy. These data support that α-amyrin could have an insulin-mimetic action in C2C12 myoblasts and should be considered as a bioactive molecule for new multitarget drugs with utility in T2D and other metabolic diseases.


Subject(s)
AMP-Activated Protein Kinases/physiology , Glucose Transporter Type 4/metabolism , Myoblasts/drug effects , PPAR delta/physiology , PPAR gamma/physiology , Pentacyclic Triterpenes/pharmacology , AMP-Activated Protein Kinases/chemistry , Animals , Cells, Cultured , Fatty Acid Transport Proteins/physiology , Mice , Molecular Docking Simulation , Myoblasts/metabolism , Pentacyclic Triterpenes/chemistry , Protein Transport/drug effects
20.
Eur J Pharmacol ; 883: 173252, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32534078

ABSTRACT

Type 2 diabetes (T2D) is a metabolic disease characterized by defects in glycemia regulation. This disease is associated with alterations in insulin action and lipid metabolism, generating hyperglycemia and dyslipidemias. Currently, it is necessary to develop new or known drugs that promote the sensitization of insulin action. Thus, activation of peroxisome proliferator-activated receptors (PPARs) is probably the key to doing this. PPARs participate in maintaining an energetic balance between storage and the expenditure of energy. The activation of PPARγ produces the storage of energy, mainly as glycogen and fat. Meanwhile, PPARα activation promotes lipid degradation. Oleanolic acid (OA), a pentacyclic triterpenoid of numerous edible and medicinal plants, decreases hyperglycemia and lipid accumulation. However, the effects on PPARs and their regulated genes are unknown. Our aim was to determine the effects of OA on PPAR γ/α expression and their regulated genes (adiponectin, type 4 glucose transporter, fatty acid transport protein, and long-chain acyl-CoA synthetase) in C2C12 myoblasts by RT-PCR, Western blot, GLUT-4 translocation, and lipid storage in 3T3-L1 adipocytes. In C2C12 myoblasts, OA increased the expression of mRNA in both PPARγ/α and their regulated genes; also, PPARγ, GLUT-4, and FATP-1 protein expression increased, as well as GLUT-4 translocation. In 3T3-L1, OA increased the expression of mRNA in both PPARγ/α and maintained lipid storage unchanged. In conclusion, OA exhibited a dual action on PPARγ/α, which might explain in part its antihyperglycemic effect. This compound represents an alternative for designing novel therapeutic strategies in the control of T2D.


Subject(s)
Adipocytes/drug effects , Glucose Transporter Type 4/metabolism , Hypoglycemic Agents/pharmacology , Hypolipidemic Agents/pharmacology , Myoblasts, Skeletal/drug effects , Oleanolic Acid/pharmacology , PPAR alpha/agonists , PPAR gamma/agonists , 3T3-L1 Cells , Adipocytes/metabolism , Animals , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Dyslipidemias/drug therapy , Dyslipidemias/metabolism , Gene Expression Regulation , Glucose Transporter Type 4/genetics , Lipid Metabolism/drug effects , Mice , Myoblasts, Skeletal/metabolism , PPAR alpha/genetics , PPAR alpha/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Protein Transport , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...