Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 14(1): 890, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38195778

ABSTRACT

Global coastal areas are at risk due to geomorphological issues, climate change-induced sea-level rise, and increasing human population, settlements, and socioeconomic activities. Here, the study examines the vulnerability of the West African (WA) coast using six satellite-derived geophysical variables and two key socioeconomic parameters as indicators of coastal vulnerability index (CVI). These geophysical and socioeconomic variables are integrated to develop a CVI for the WA coast. Then, the regional hotspots of vulnerability with the main indicators that could influence how the WA coast behaves and can be managed are identified. The results indicate that 64, 17 and 19% of WA coastal areas had high to very high CVI, moderate CVI, and low to very low CVI, respectively. The study reveals that while geophysical variables contribute to coastal vulnerability in WA, socioeconomic factors, particularly high population growth and unsustainable human development at the coast, play a considerably larger role. Some sections of the WA coast are more vulnerable and exposed than others, particularly those in the region's northwestern and Gulf of Guinea regions. Climate change and human presence may amplify the vulnerability in these vulnerable areas in the future. Hence, future coastal economic development plans should be based on a deep understanding of local natural conditions, resource status, and geophysical parameters to prevent negative coastal ecosystem transformation. It is also essential to establish a coastal management plan that would facilitate the development of desired actions and stimulate sustainable management of West African coastal areas.

4.
Nat Commun ; 14(1): 3133, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37308517

ABSTRACT

Coastal zones are fragile and complex dynamical systems that are increasingly under threat from the combined effects of anthropogenic pressure and climate change. Using global satellite derived shoreline positions from 1993 to 2019 and a variety of reanalysis products, here we show that shorelines are under the influence of three main drivers: sea-level, ocean waves and river discharge. While sea level directly affects coastal mobility, waves affect both erosion/accretion and total water levels, and rivers affect coastal sediment budgets and salinity-induced water levels. By deriving a conceptual global model that accounts for the influence of dominant modes of climate variability on these drivers, we show that interannual shoreline changes are largely driven by different ENSO regimes and their complex inter-basin teleconnections. Our results provide a new framework for understanding and predicting climate-induced coastal hazards.

5.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Article in English | MEDLINE | ID: mdl-34782477

ABSTRACT

Wind-generated waves are dominant drivers of coastal dynamics and vulnerability, which have considerable impacts on littoral ecosystems and socioeconomic activities. It is therefore paramount to improve coastal hazards predictions through the better understanding of connections between wave activity and climate variability. In the Pacific, the dominant climate mode is El Niño Southern Oscillation (ENSO), which has known a renaissance of scientific interest leading to great theoretical advances in the past decade. Yet studies on ENSO's coastal impacts still rely on the oversimplified picture of the canonical dipole across the Pacific. Here, we consider the full ENSO variety to delineate its essential teleconnection pathways to tropical and extratropical storminess. These robust seasonally modulated relationships allow us to develop a mathematical model of coastal wave modulation essentially driven by ENSO's complex temporal and spatial behavior. Accounting for this nonlinear climate control on Pan-Pacific wave activity leads to a much better characterization of waves' seasonal to interannual variability (+25% in explained variance) and intensity of extremes (+60% for strong ENSO events), therefore paving the way for significantly more accurate forecasts than formerly possible with the previous baseline understanding of ENSO's influence on coastal hazards.

6.
Sensors (Basel) ; 21(21)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34770313

ABSTRACT

Coasts are areas of vitality because they host numerous activities worldwide. Despite their major importance, the knowledge of the main characteristics of the majority of coastal areas (e.g., coastal bathymetry) is still very limited. This is mainly due to the scarcity and lack of accurate measurements or observations, and the sparsity of coastal waters. Moreover, the high cost of performing observations with conventional methods does not allow expansion of the monitoring chain in different coastal areas. In this study, we suggest that the advent of remote sensing data (e.g., Sentinel 2A/B) and high performance computing could open a new perspective to overcome the lack of coastal observations. Indeed, previous research has shown that it is possible to derive large-scale coastal bathymetry from S-2 images. The large S-2 coverage, however, leads to a high computational cost when post-processing the images. Thus, we develop a methodology implemented on a High-Performance cluster (HPC) to derive the bathymetry from S-2 over the globe. In this paper, we describe the conceptualization and implementation of this methodology. Moreover, we will give a general overview of the generated bathymetry map for NA compared with the reference GEBCO global bathymetric product. Finally, we will highlight some hotspots by looking closely to their outputs.


Subject(s)
Geographic Information Systems , Oceans and Seas , Africa, Northern , Environmental Monitoring , Oceanography
7.
Nat Commun ; 12(1): 3775, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34145274

ABSTRACT

Climate change and anthropogenic pressures are widely expected to exacerbate coastal hazards such as episodic coastal flooding. This study presents global-scale potential coastal overtopping estimates, which account for not only the effects of sea level rise and storm surge, but also for wave runup at exposed open coasts. Here we find that the globally aggregated annual overtopping hours have increased by almost 50% over the last two decades. A first-pass future assessment indicates that globally aggregated annual overtopping hours will accelerate faster than the global mean sea-level rise itself, with a clearly discernible increase occurring around mid-century regardless of climate scenario. Under RCP 8.5, the globally aggregated annual overtopping hours by the end of the 21st-century is projected to be up to 50 times larger compared to present-day. As sea level continues to rise, more regions around the world are projected to become exposed to coastal overtopping.

9.
Sci Data ; 8(1): 22, 2021 01 20.
Article in English | MEDLINE | ID: mdl-33473128

ABSTRACT

High quality laboratory measurements of nearshore waves and morphology change at, or near prototype-scale are essential to support new understanding of coastal processes and enable the development and validation of predictive models. The DynaRev experiment was completed at the GWK large wave flume over 8 weeks during 2017 to investigate the response of a sandy beach to water level rise and varying wave conditions with and without a dynamic cobble berm revetment, as well as the resilience of the revetment itself. A large array of instrumentation was used throughout the experiment to capture: (1) wave transformation from intermediate water depths to the runup limit at high spatio-temporal resolution, (2) beach profile change including wave-by-wave changes in the swash zone, (3) detailed hydro and morphodynamic measurements around a developing and a translating sandbar.

SELECTION OF CITATIONS
SEARCH DETAIL
...