Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(5): e0286291, 2023.
Article in English | MEDLINE | ID: mdl-37228139

ABSTRACT

Multicellular cancer spheroids are an in vitro tissue model that mimics the three-dimensional microenvironment. As spheroids grow, they develop the gradients of oxygen, nutrients, and catabolites, affecting crucial tumor characteristics such as proliferation and treatment responses. The measurement of spheroid stiffness provides a quantitative measure to evaluate such structural changes over time. In this report, we measured the stiffness of size-matched day 5 and day 20 tumor spheroids using a custom-built microscale force sensor and conducted transmission electron microscopy (TEM) imaging to compare the internal structures. We found that older spheroids reduce interstitial spaces in the core region and became significantly stiffer. The measured elastic moduli were 260±100 and 680±150 Pa, for day 5 and day 20 spheroids, respectively. The day 20 spheroids showed an optically dark region in the center. Analyzing the high-resolution TEM images of spheroid middle sections across the diameter showed that the cells in the inner region of the day 20 spheroids are significantly larger and more closely packed than those in the outer regions. On the other hand, the day 5 spheroids did not show a significant difference between the inner and outer regions. The observed reduction of the interstitial space may be one factor that contributes to stiffer older spheroids.


Subject(s)
Neoplasms , Spheroids, Cellular , Humans , Microscopy, Electron , Tumor Microenvironment
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 4480-4483, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30441346

ABSTRACT

We investigate the structural cellular alterations in breast cancer spheroids at various growth stages using transmission electron microscopy (TEM), focused ion beam (FIB), and scanning electron microscopy (SEM) imaging. Samples sliced by FIB milling were studied for 3D analysis and construction. The imaging results of different spheroid ages were compared for a better understanding of cancer spheroid models. This study will serve as a pilot study and reference control for further studies with the 3D tumor model including nanoparticles interaction and mechanical characterization.


Subject(s)
Breast Neoplasms/diagnostic imaging , Spheroids, Cellular/ultrastructure , Breast Neoplasms/ultrastructure , Humans , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Pilot Projects
3.
Comb Chem High Throughput Screen ; 21(7): 495-500, 2018.
Article in English | MEDLINE | ID: mdl-30209996

ABSTRACT

AIM AND OBJECTIVE: Formation of the gallbladder stones is a common disease and a major health problem. The present study aimed to identify the structures of the most common types of gallbladder stones using X-ray spectroscopic techniques, which provide information about the process of stone formation. MATERIAL AND METHOD: Phase and elemental compositions of pure cholesterol and mixed gallstones removed from gallbladders of patients were studied using energy-dispersive X-ray spectroscopy combined with scanning electron microscopy analysis and X-ray diffraction. RESULTS: The crystal structures of gallstones which coincide with standard patterns were confirmed by X-ray diffraction. Plate-like cholesterol crystals with laminar shaped and thin layered structures were clearly observed for gallstone of pure cholesterol by scanning electron microscopy; it also revealed different morphologies from mixed cholesterol stones. Elemental analysis of pure cholesterol and mixed gallstones using energy-dispersive X-ray spectroscopy confirmed the different formation processes of the different types of gallstones. CONCLUSION: The method of fast and reliable X-ray spectroscopic techniques has numerous advantages over the traditional chemical analysis and other analytical techniques. The results also revealed that the X-ray spectroscopy technique is a promising technique that can aid in understanding the pathogenesis of gallstone disease.


Subject(s)
Gallstones/chemistry , Spectrometry, X-Ray Emission , High-Throughput Screening Assays , Particle Size , Surface Properties , X-Ray Diffraction
4.
Clin Appl Thromb Hemost ; 22(4): 386-9, 2016 May.
Article in English | MEDLINE | ID: mdl-25505013

ABSTRACT

Hemorheology, a measure of rheological properties of blood, is often correlated with cerebral blood flow and cardiac output; an increased blood viscosity may increase the risk of thrombosis or thromboembolic events. Previous studies have reported a large variation in hemorheological properties of blood among smokers. This prompted us to conduct coagulation experiments to evaluate the effect of cigarette smoking on hematological parameters, like cell counts, and coagulation parameters among young males in Al-Jouf region, Saudi Arabia. The hematological and coagulation parameters were used to relate the changes in viscosity and coagulation to smoking. A total of 321 male participants (126 nonsmokers and 195 smokers) were enrolled into the study as randomized sample. Complete blood count was measured by hematology analyzer, and coagulation tests were performed by coagulation analyzer. Thettest analysis was performed to compare the relationships of variables between the 2 groups. The results confirmed that smoking alters some hematology parameters leading to significant deterioration in blood flow properties. Smoking also increased the hematocrit (HCT), whole blood viscosity (WBV), and plasma viscosity (PV) but decreased the international normalized ratio (INR). The decrease in INR was found to be associated with the increase in WBV, PV, and HCT. Further investigations are necessary to assess the reversibility of such changes in cessation of smoking or other elements of influence.


Subject(s)
Blood Coagulation , Blood Viscosity , Smoking/blood , Adult , Humans , Male , Saudi Arabia
SELECTION OF CITATIONS
SEARCH DETAIL
...