Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters











Publication year range
1.
J Chem Phys ; 145(14): 144501, 2016 Oct 14.
Article in English | MEDLINE | ID: mdl-27782509

ABSTRACT

A lattice model for the study of mixtures of associating liquids is proposed. Solvent and solute are modeled by adapting the associating lattice gas (ALG) model. The nature of interaction of solute/solvent is controlled by tuning the energy interactions between the patches of ALG model. We have studied three set of parameters, resulting in, hydrophilic, inert, and hydrophobic interactions. Extensive Monte Carlo simulations were carried out, and the behavior of pure components and the excess properties of the mixtures have been studied. The pure components, water (solvent) and solute, have quite similar phase diagrams, presenting gas, low density liquid, and high density liquid phases. In the case of solute, the regions of coexistence are substantially reduced when compared with both the water and the standard ALG models. A numerical procedure has been developed in order to attain series of results at constant pressure from simulations of the lattice gas model in the grand canonical ensemble. The excess properties of the mixtures, volume and enthalpy as the function of the solute fraction, have been studied for different interaction parameters of the model. Our model is able to reproduce qualitatively well the excess volume and enthalpy for different aqueous solutions. For the hydrophilic case, we show that the model is able to reproduce the excess volume and enthalpy of mixtures of small alcohols and amines. The inert case reproduces the behavior of large alcohols such as propanol, butanol, and pentanol. For the last case (hydrophobic), the excess properties reproduce the behavior of ionic liquids in aqueous solution.

2.
Soft Matter ; 12(36): 7551-63, 2016 09 28.
Article in English | MEDLINE | ID: mdl-27507622

ABSTRACT

Template-assisted pattern formation in monolayers of particles with competing short-range attraction and long-range repulsion interactions (SALR) is studied by Monte Carlo simulations in a simple generic model [N. G. Almarza et al., J. Chem. Phys., 2014, 140, 164708]. We focus on densities corresponding to formation of parallel stripes of particles and on monolayers laterally confined between straight parallel walls. We analyze both the morphology of the developed structures and the thermodynamic functions for broad ranges of temperature T and the separation L2 between the walls. At low temperature stripes parallel to the boundaries appear, with some corrugation when the distance between the walls does not match the bulk periodicity of the striped structure. The stripes integrity, however, is rarely broken for any L2. This structural order is lost at T = TK(L2) depending on L2 according to a Kelvin-like equation. Above the Kelvin temperature TK(L2) many topological defects such as breaking or branching of the stripes appear, but a certain anisotropy in the orientation of the stripes persists. Finally, at high temperature and away from the walls, the system behaves as an isotropic fluid of elongated clusters of various lengths and with various numbers of branches. For L2 optimal for the stripe pattern the heat capacity as a function of temperature takes the maximum at T = TK(L2).

3.
J Chem Phys ; 142(20): 204904, 2015 May 28.
Article in English | MEDLINE | ID: mdl-26026462

ABSTRACT

The effects of confinement on colloidal self-assembly in the case of fixed number of confined particles are studied in the one dimensional lattice model solved exactly in the grand canonical ensemble (GCE) in PÈ©kalski et al. [J. Chem. Phys. 142, 014903 (2015)]. The model considers a pair interaction defined by a short-range attraction plus a longer-range repulsion. We consider thermodynamic states corresponding to self-assembly into clusters. Both fixed and adaptive boundaries are studied. For fixed boundaries, there are particular states in which, for equal average densities, the number of clusters in the GCE is larger than in the canonical ensemble. The dependence of pressure on density has a different form when the system size changes with fixed number of particles and when the number of particles changes with fixed size of the system. In the former case, the pressure has a nonmonotonic dependence on the system size. The anomalous increase of pressure for expanding system is accompanied by formation of a larger number of smaller clusters. In the case of elastic confining surfaces, we observe a bistability, i.e., two significantly different system sizes occur with almost the same probability. The mechanism of the bistability in the closed system is different to that of the case of permeable walls, where the two equilibrium system sizes correspond to a different number of particles.

4.
Soft Matter ; 11(29): 5828-38, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26098611

ABSTRACT

We generalize Wertheim's first order perturbation theory to account for the effect in the thermodynamics of the self-assembly of rings characterized by two energy scales. The theory is applied to a lattice model of patchy particles and tested against Monte Carlo simulations on a fcc lattice. These particles have 2 patches of type A and 10 patches of type B, which may form bonds AA or AB that decrease the energy by εAA and by εAB ≡ rεAA, respectively. The angle θ between the 2 A-patches on each particle is fixed at 60°, 90° or 120°. For values of r below 1/2 and above a threshold rth(θ) the models exhibit a phase diagram with two critical points. Both theory and simulation predict that rth increases when θ decreases. We show that the mechanism that prevents phase separation for models with decreasing values of θ is related to the formation of loops containing AB bonds. Moreover, we show that by including the free energy of B-rings (loops containing one AB bond), the theory describes the trends observed in the simulation results, but that for the lowest values of θ, the theoretical description deteriorates due to the increasing number of loops containing more than one AB bond.

5.
J Chem Phys ; 142(1): 014702, 2015 Jan 07.
Article in English | MEDLINE | ID: mdl-25573573

ABSTRACT

Using Monte Carlo simulation, we study the influence of geometric confinement on demixing for a series of symmetric non-additive hard spheres mixtures confined in slit pores. We consider both a wide range of positive non-additivities and a series of pore widths, ranging from the pure two dimensional limit to a large pore width where results are close to the bulk three dimensional case. Critical parameters are extracted by means of finite size analysis. As a general trend, we find that for this particular case in which demixing is induced by volume effects, the critical demixing densities (and pressures) increase due to confinement between neutral walls, following the expected behavior for phase equilibria of systems confined by pure repulsive walls: i.e., confinement generally enhances miscibility. However, a non-monotonous dependence of the critical pressure and density with pore size is found for small non-additivities. In this latter case, it turns out that an otherwise stable bulk mixture can be unexpectedly forced to demix by simple geometric confinement when the pore width decreases down to approximately one and a half molecular diameters.

6.
J Chem Phys ; 142(1): 014903, 2015 Jan 07.
Article in English | MEDLINE | ID: mdl-25573579

ABSTRACT

The impact of confinement on self-assembly of particles interacting with short-range attraction and long-range repulsion potential is studied for thermodynamic states corresponding to local ordering of clusters or layers in the bulk. Exact and asymptotic expressions for the local density and for the effective potential between the confining surfaces are obtained for a one-dimensional lattice model introduced by J. PÈ©kalski et al. [J. Chem. Phys. 138, 144903 (2013)]. The simple asymptotic formulas are shown to be in good quantitative agreement with exact results for slits containing at least 5 layers. We observe that the incommensurability of the system size and the average distance between the clusters or layers in the bulk leads to structural deformations that are different for different values of the chemical potential µ. The change of the type of defects is reflected in the dependence of density on µ that has a shape characteristic for phase transitions. Our results may help to avoid misinterpretation of the change of the type of defects as a phase transition in simulations of inhomogeneous systems. Finally, we show that a system confined by soft elastic walls may exhibit bistability such that two system sizes that differ approximately by the average distance between the clusters or layers are almost equally probable. This may happen when the equilibrium separation between the soft boundaries of an empty slit corresponds to the largest stress in the confined self-assembling system.

7.
J Chem Phys ; 140(22): 224701, 2014 Jun 14.
Article in English | MEDLINE | ID: mdl-24929408

ABSTRACT

In this paper we investigate the adsorption of various probe molecules in order to characterize the porous structure of a series of pillared interlayered clays (PILC). To that aim, volumetric and microcalorimetric adsorption experiments were performed on various Zr PILC samples using nitrogen, toluene, and mesitylene as probe molecules. For one of the samples, neutron scattering experiments were also performed using toluene as adsorbate. Various structural models are proposed and tested by means of a comprehensive computer simulation study, using both geometric and percolation analysis in combination with Grand Canonical Monte Carlo simulations in order to model the volumetric and microcalorimetric isotherms. On the basis of this analysis, we propose a series of structural models that aim at accounting for the adsorption experimental behavior, and make possible a microscopic interpretation of the role played by the different interactions and steric effects in the adsorption processes in these rather complex disordered microporous systems.

8.
J Chem Phys ; 140(16): 164708, 2014 Apr 28.
Article in English | MEDLINE | ID: mdl-24784300

ABSTRACT

The triangular lattice model with nearest-neighbor attraction and third-neighbor repulsion, introduced by PÈ©kalski, Ciach, and Almarza [J. Chem. Phys. 140, 114701 (2014)] is studied by Monte Carlo simulation. Introduction of appropriate order parameters allowed us to construct a phase diagram, where different phases with patterns made of clusters, bubbles or stripes are thermodynamically stable. We observe, in particular, two distinct lamellar phases-the less ordered one with global orientational order and the more ordered one with both orientational and translational order. Our results concern spontaneous pattern formation on solid surfaces, fluid interfaces or membranes that is driven by competing interactions between adsorbing particles or molecules.


Subject(s)
Computer Simulation , Monte Carlo Method , Thermodynamics , Adsorption , Membrane Fluidity , Phase Transition
9.
J Chem Phys ; 140(11): 114701, 2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24655192

ABSTRACT

The short-range attraction and long-range repulsion between nanoparticles or macromolecules can lead to spontaneous pattern formation on solid surfaces, fluid interfaces, or membranes. In order to study the self-assembly in such systems we consider a triangular lattice model with nearest-neighbor attraction and third-neighbor repulsion. At the ground state of the model (T = 0) the lattice is empty for small values of the chemical potential µ, and fully occupied for large µ. For intermediate values of µ periodically distributed clusters, bubbles, or stripes appear if the repulsion is sufficiently strong. At the phase coexistences between the vacuum and the ordered cluster phases and between the cluster and the lamellar (stripe) phases the entropy per site does not vanish. As a consequence of this ground state degeneracy, disordered fluid phases consisting of clusters or stripes are stable, and the surface tension vanishes. For T > 0 we construct the phase diagram in the mean-field approximation and calculate the correlation function in the self-consistent Brazovskii-type field theory.


Subject(s)
Quantum Theory , Entropy , Macromolecular Substances/chemistry , Molecular Structure , Nanoparticles/chemistry
10.
J Chem Phys ; 140(4): 044905, 2014 Jan 28.
Article in English | MEDLINE | ID: mdl-25669581

ABSTRACT

We investigate the structural and thermodynamic properties of a model of particles with 2 patches of type A and 10 patches of type B. Particles are placed on the sites of a face centered cubic lattice with the patches oriented along the nearest neighbor directions. The competition between the self-assembly of chains, rings, and networks on the phase diagram is investigated by carrying out a systematic investigation of this class of models, using an extension of Wertheim's theory for associating fluids and Monte Carlo numerical simulations. We varied the ratio r ≡ εAB/εAA of the interaction between patches A and B, εAB, and between A patches, εAA (εBB is set to 0) as well as the relative position of the A patches, i.e., the angle θ between the (lattice) directions of the A patches. We found that both r and θ (60°, 90°, or 120°) have a profound effect on the phase diagram. In the empty fluid regime (r < 1/2) the phase diagram is reentrant with a closed miscibility loop. The region around the lower critical point exhibits unusual structural and thermodynamic behavior determined by the presence of relatively short rings. The agreement between the results of theory and simulation is excellent for θ = 120° but deteriorates as θ decreases, revealing the need for new theoretical approaches to describe the structure and thermodynamics of systems dominated by small rings.

11.
J Chem Phys ; 138(14): 144903, 2013 Apr 14.
Article in English | MEDLINE | ID: mdl-24981545

ABSTRACT

A generic lattice model for systems containing particles interacting with short-range attraction long-range repulsion (SALR) potential that can be solved exactly in one dimension is introduced. We assume attraction J1 between the first neighbors and repulsion J2 between the third neighbors. The ground state of the model shows existence of two homogeneous phases (gas and liquid) for J2/J1 <1/3. In addition to the homogeneous phases, the third phase with periodically distributed clusters appears for J2/J1 > 1/3. Phase diagrams obtained in the self-consistent mean-field approximation for a range of values of J2/J1 show very rich behavior, including reentrant melting, and coexistence of two periodic phases (one with strong and the other one with weak order) terminated at a critical point. We present exact solutions for the equation of state as well as for the correlation function for characteristic values of J2/J1. Based on the exact results, for J2/J1 > 1/3 we predict pseudo-phase transitions to the ordered cluster phase indicated by a rapid change of density for a very narrow range of pressure, and by a very large correlation length for thermodynamic states where the periodic phase is stable in mean field. For 1/9 < J2/J1 < 1/3 the correlation function decays monotonically below certain temperature, whereas above this temperature exponentially damped oscillatory behavior is obtained. Thus, even though macroscopic phase separation is energetically favored and appears for weak repulsion at T = 0, local spatial inhomogeneities appear for finite T. Monte Carlo simulations in canonical ensemble show that specific heat has a maximum for low density ρ that we associate with formation of living clusters, and if the repulsion is strong, another maximum for ρ = 1/2.


Subject(s)
Models, Theoretical , Phase Transition , Thermodynamics , Monte Carlo Method , Temperature
12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(3 Pt 1): 030101, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23030851

ABSTRACT

We report Monte Carlo simulations that show a closed-loop liquid-vapor equilibrium in a pure substance. This finding has been achieved on a two-dimensional lattice model for patchy particles that can form network fluids. We have considered related models with a slightly different patch distribution in order to understand the features of the distribution of patches on the surface of the particles that make possible the presence of the closed-loop liquid-vapor equilibrium, and its relation to the phase diagram containing so-called empty liquids. Finally we discuss the likelihood of finding the closed-loop liquid-vapor equilibria on related models for three-dimensional models of patchy particles in the continuum, and speculate on the possible relationship between the mechanism behind the closed-loop liquid-vapor equilibrium of our simple lattice model and the salt-induced reentrant condensation found in complex systems.

13.
J Chem Phys ; 137(7): 074901, 2012 Aug 21.
Article in English | MEDLINE | ID: mdl-22920139

ABSTRACT

We investigate the nature of the ordered phase and the orientational correlations between adjacent layers of the confined three-dimensional self-assembled rigid rod model, on the cubic lattice. We find that the ordered phase at finite temperatures becomes uniaxial in the thermodynamic limit, by contrast to the ground state (partial) order where the orientation of the uncorrelated layers is perpendicular to one of the three lattice directions. The increase of the orientational correlation between layers as the number of layers increases suggests that the unconfined model may also exhibit uniaxial ordering at finite temperatures.

14.
J Chem Phys ; 137(24): 244902, 2012 Dec 28.
Article in English | MEDLINE | ID: mdl-23277951

ABSTRACT

The phase diagram of a simple model with two patches of type A and ten patches of type B (2A10B) on the face centred cubic lattice has been calculated by simulations and theory. Assuming that there is no interaction between the B patches the behavior of the system can be described in terms of the ratio of the AB and AA interactions, r. Our results show that, similarly to what happens for related off-lattice and two-dimensional lattice models, the liquid-vapor phase equilibria exhibit reentrant behavior for some values of the interaction parameters. However, for the model studied here the liquid-vapor phase equilibria occur for values of r lower than 1/3, a threshold value which was previously thought to be universal for 2AnB models. In addition, the theory predicts that below r=1/3 (and above a new condensation threshold which is <1/3) the reentrant liquid-vapor equilibria are so extreme that it exhibits a closed loop with a lower critical point, a very unusual behavior in single-component systems. An order-disorder transition is also observed at higher densities than the liquid-vapor equilibria, which shows that the liquid-vapor reentrancy occurs in an equilibrium region of the phase diagram. These findings may have implications in the understanding of the condensation of dipolar hard spheres given the analogy between that system and the 2AnB models considered here.

15.
J Chem Phys ; 135(17): 174903, 2011 Nov 07.
Article in English | MEDLINE | ID: mdl-22070322

ABSTRACT

We consider a simple model consisting of particles with four bonding sites ("patches"), two of type A and two of type B, on the square lattice, and investigate its global phase behavior by simulations and theory. We set the interaction between B patches to zero and calculate the phase diagram as the ratio between the AB and the AA interactions, ε(AB)*, varies. In line with previous work, on three-dimensional off-lattice models, we show that the liquid-vapor phase diagram exhibits a re-entrant or "pinched" shape for the same range of ε(AB)*, suggesting that the ratio of the energy scales--and the corresponding empty fluid regime--is independent of the dimensionality of the system and of the lattice structure. In addition, the model exhibits an order-disorder transition that is ferromagnetic in the re-entrant regime. The use of low-dimensional lattice models allows the simulation of sufficiently large systems to establish the nature of the liquid-vapor critical points and to describe the structure of the liquid phase in the empty fluid regime, where the size of the "voids" increases as the temperature decreases. We have found that the liquid-vapor critical point is in the 2D Ising universality class, with a scaling region that decreases rapidly as the temperature decreases. The results of simulations and theoretical analysis suggest that the line of order-disorder transitions intersects the condensation line at a multi-critical point at zero temperature and density, for patchy particle models with a re-entrant, empty fluid, regime.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(4 Pt 1): 041701, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21599180

ABSTRACT

We discuss the Lebwohl-Lasher model of nematic liquid crystals in a confined geometry, using Monte Carlo simulation and mean-field theory. A film of material is sandwiched between two planar, parallel plates that couple to the adjacent spins via a surface strength ε(s). We consider the cases where the favored alignments at the two walls are the same (symmetric cell) or different (asymmetric cell). In the latter case, we demonstrate the existence of a single phase transition in the slab for all values of the cell thickness. This transition has been observed before in the regime of narrow cells, where the two structures involved correspond to different arrangements of the nematic director. By studying wider cells, we show that the transition is in fact the usual isotropic-to-nematic (capillary) transition under confinement in the case of antagonistic surface forces. We show results for a wide range of values of film thickness and discuss the phenomenology using a mean-field model.

17.
J Chem Phys ; 134(7): 071101, 2011 Feb 21.
Article in English | MEDLINE | ID: mdl-21341821

ABSTRACT

The criticality of self-assembled rigid rods on triangular lattices is investigated using Monte Carlo simulation. We find a continuous transition between an ordered phase, where the rods are oriented along one of the three (equivalent) lattice directions, and a disordered one. We conclude that equilibrium polydispersity of the rod lengths does not affect the critical behavior, as we found that the criticality is the same as that of monodisperse rods on the same lattice, in contrast with the results of recently published work on similar models.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(1 Pt 1): 011140, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20866598

ABSTRACT

The phase behavior of confined nematogens is studied using the Lebwohl-Lasher model. For three-dimensional systems the model is known to exhibit a discontinuous nematic-isotropic phase transition, whereas the corresponding two-dimensional systems apparently show a continuous Berezinskii-Kosterlitz-Thouless-like transition. In this paper, we study the phase transitions of the Lebwohl-Lasher model when confined between planar slits of different widths in order to establish the behavior of intermediate situations between the pure planar model and the three-dimensional system, and compare with previous estimates for the critical thickness, i.e., the slit width at which the transition switches from continuous to discontinuous.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(6 Pt 1): 061117, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21230654

ABSTRACT

Extensive Monte Carlo simulations were carried out to investigate the nature of the ordering transition of a model of adsorbed self-assembled rigid rods on the bonds of a square lattice [Tavares, Phys. Rev. E 79, 021505 (2009)]. The polydisperse rods undergo a continuous ordering transition that is found to be in the two-dimensional Ising universality class, as in models where the rods are monodisperse. This finding is in sharp contrast with the recent claim that equilibrium polydispersity changes the nature of the phase transition in this class of models [López, Phys. Rev. E 80, 040105(R) (2009)].

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(3 Pt 1): 031501, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19905114

ABSTRACT

The Maier-Saupe hard-sphere fluid is one of the simplest models that accounts for the isotropic-nematic transition characteristic of liquid crystal phases. At low temperatures the model is known to present a gas-liquid-like transition with a large difference between the densities of the coexistence phases, whereas at higher temperature the transition becomes a weak first-order transition resembling the typical order-disorder (nematic-isotropic) phase change of liquid crystals. Spatial dimensionality directly conditions the character of the orientational phase change (i.e., the high temperature transition), that goes from a first-order transition in the purely three-dimensional case, to a Berezinskii-Kosterlitz-Thouless-like continuous transition which occurs when the three dimensional Maier-Saupe spins are constrained to lie on a plane. In the latter instance, the ordered phase is not endowed with true long-range order. In this work we investigate how the continuous transition transforms into a true first-order phase change, by analyzing the phase behavior of a system of three dimensional Maier-Saupe hard spheres confined between two parallel plates, with separations ranging from the quasi-two-dimensional regime to the bulk three-dimensional limit. Our results indicate that spatial confinement in one direction induces the change from first order to a continuous transition with a corresponding decrease of the transition temperatures. As to the gas-liquid transition, the estimated "critical" temperatures and densities also decrease as the fluid is confined, in agreement with previous results for other simple systems.

SELECTION OF CITATIONS
SEARCH DETAIL