Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 43(5): 114144, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38656874

ABSTRACT

The molecular mechanisms underlying seizure generation remain elusive, yet they are crucial for developing effective treatments for epilepsy. The current study shows that inhibiting c-Abl tyrosine kinase prevents apoptosis, reduces dendritic spine loss, and maintains N-methyl-d-aspartate (NMDA) receptor subunit 2B (NR2B) phosphorylated in in vitro models of excitotoxicity. Pilocarpine-induced status epilepticus (SE) in mice promotes c-Abl phosphorylation, and disrupting c-Abl activity leads to fewer seizures, increases latency toward SE, and improved animal survival. Currently, clinically used c-Abl inhibitors are non-selective and have poor brain penetration. The allosteric c-Abl inhibitor, neurotinib, used here has favorable potency, selectivity, pharmacokinetics, and vastly improved brain penetration. Neurotinib-administered mice have fewer seizures and improved survival following pilocarpine-SE induction. Our findings reveal c-Abl kinase activation as a key factor in ictogenesis and highlight the impact of its inhibition in preventing the insurgence of epileptic-like seizures in rodents and humans.


Subject(s)
Pilocarpine , Proto-Oncogene Proteins c-abl , Seizures , Animals , Male , Mice , Apoptosis/drug effects , Mice, Inbred C57BL , Neurons/drug effects , Neurons/pathology , Neurons/metabolism , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-abl/metabolism , Proto-Oncogene Proteins c-abl/antagonists & inhibitors , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Seizures/chemically induced , Seizures/drug therapy , Seizures/pathology , Status Epilepticus/chemically induced , Status Epilepticus/drug therapy , Status Epilepticus/pathology
2.
Int J Mol Sci ; 21(1)2019 Dec 19.
Article in English | MEDLINE | ID: mdl-31861684

ABSTRACT

Dysferlin is a transmembrane C-2 domain-containing protein involved in vesicle trafficking and membrane remodeling in skeletal muscle cells. However, the mechanism by which dysferlin regulates these cellular processes remains unclear. Since actin dynamics is critical for vesicle trafficking and membrane remodeling, we studied the role of dysferlin in Ca2+-induced G-actin incorporation into filaments in four different immortalized myoblast cell lines (DYSF2, DYSF3, AB320, and ER) derived from patients harboring mutations in the dysferlin gene. As compared with immortalized myoblasts obtained from a control subject, dysferlin expression and G-actin incorporation were significantly decreased in myoblasts from dysferlinopathy patients. Stable knockdown of dysferlin with specific shRNA in control myoblasts also significantly reduced G-actin incorporation. The impaired G-actin incorporation was restored by the expression of full-length dysferlin as well as dysferlin N-terminal or C-terminal regions, both of which contain three C2 domains. DYSF3 myoblasts also exhibited altered distribution of annexin A2, a dysferlin partner involved in actin remodeling. However, dysferlin N-terminal and C-terminal regions appeared to not fully restore such annexin A2 mislocation. Then, our results suggest that dysferlin regulates actin remodeling by a mechanism that does to not involve annexin A2.


Subject(s)
Actins/metabolism , Dysferlin/chemistry , Muscular Dystrophies, Limb-Girdle/metabolism , Myoblasts/cytology , Actin Cytoskeleton/metabolism , Actins/genetics , Adolescent , Adult , Cell Line , Dysferlin/genetics , Dysferlin/metabolism , Female , Humans , Male , Muscular Dystrophies, Limb-Girdle/genetics , Myoblasts/metabolism , Protein Domains
SELECTION OF CITATIONS
SEARCH DETAIL
...