Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 253(Pt 2): 126807, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37689302

ABSTRACT

Fabricating a biocompatible small-diameter vascular graft (< 6 mm) with mechanical properties similar to the natural vein and adding good anti-thrombogenic, endothelialization, and hyperplasia properties remains a challenge. To this end, we fabricated a heparinized bilayer graft to address this problem. The proposed bilayer sample consisted of a heparinized polycaprolactone (PCL), polyurethane (PU), and gelatin (G) co-electrospun inner layer and chitosan, gelatin, and silk fibroin freeze-dried hydrogel crosslinked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) outer layer. The samples exhibited great ultimate stress, Young's module, and suture retention of 4.16±0.25MPa, 8.24±2.59MPa and 4.83±0.31N, respectively. The heparin release assay indicated a sustained release profile of around 70% after 4weeks, which can be attributed to the excellent control via emulsion. Furthermore, the heparinized samples demonstrated good anti-thrombogenic properties investigated in the platelet adhesion assay. For the outer layer, the hydrogel crosslinked with non-toxic materials was prepared through the freeze-drying method to achieve high porosity (64.63%), suitable for smooth muscle cell activity. Moreover, inner and outer layers showed high cell viability toward endothelial (78.96%) and smooth muscle cells (57.77%), respectively. Overall, the proposed heparinized graft exhibited excellent potential for vascular graft regeneration.


Subject(s)
Chitosan , Fibroins , Hydrogels , Gelatin , Polyurethanes , Polyesters , Blood Vessel Prosthesis
2.
Int J Biol Macromol ; 253(Pt 3): 126929, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37717877

ABSTRACT

The replication of skin's dermal and epidermal morphology within a full-thickness wound using a bi-layer hydrogel to cater to their distinct needs is a compelling pursuit. Moreover, human placenta extract (HPE), containing a diverse array of bioactive agents, has proven to be effective in promoting the wound healing process and enhancing epidermal keratinocytes. This study presents a multifunctional bi-layer hydrogel incorporating HPE for accelerating full-thickness wound healing through sustained HPE release, inhibition of bacteria invasion, and promotion of cell proliferation. The upper layer of the scaffold, known as the dressing layer, is composed of carboxymethyl cellulose and sodium alginate, serving as a supportive layer for cell proliferation. The under layer, referred to as the regenerative layer, is composed of chitosan and gelatin, providing an extracellular matrix-like, porous, moist, and antibacterial environment for cell growth. The scaffold was optimized to replicate the morphology of the dermal and epidermal layers, with suitable fibroblast infiltration and a pore size of approximately 283µm. Furthermore, the degradation rate of the samples matched the wound healing rate and persisted throughout this period. The sustained HPE release rate, facilitated by the degradation rate, was optimized to reach ~98% after 28 days, covering the entire healing period. The samples demonstrated robust antibacterial capabilities, with bacterial inhibition zone diameters of and 2.63±0.12cm for S. aureus and E. coli, respectively. The biocompatibility of the samples remained at approximately 68.33±4.5% after 21 days of fibroblast cell culture. The in vivo experiment indicated that the HPE@Bilayer hydrogel promotes the formation of new blood vessels and fibroblasts during the early stages of healing, leading to the appropriate formation of granulation tissue and a wound contraction rate of (79.31±3.1)%. Additionally, it resulted in the formation of a thick epidermal layer (keratinization) that effectively covered all the impaired areas, achieving a wound contraction rate of 95.83±6.3% at the late stage of wound healing. Furthermore, immunohistochemistry staining for CD31 and TGF-ß revealed that the HPE@Bilayer group had 22 blood vessels/field and 34%-66% immunoactive cells, respectively, after 14 days of healing. However, by day 21, angiogenesis and TGF-ß expression had declined, demonstrating that the wounds had been successfully treated with minimal scarring.


Subject(s)
Chitosan , Humans , Pregnancy , Female , Chitosan/pharmacology , Hydrogels/pharmacology , Gelatin/pharmacology , Carboxymethylcellulose Sodium/pharmacology , Alginates/pharmacology , Staphylococcus aureus , Escherichia coli , Wound Healing , Anti-Bacterial Agents/pharmacology , Transforming Growth Factor beta/pharmacology , Placenta
3.
Phys Chem Chem Phys ; 25(15): 10697-10705, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37000586

ABSTRACT

Investigating the protein adhesion properties of polymeric scaffolds through computational simulations can predict the biocompatibility of scaffolds before an experimental assay is carried out. This prediction can be highly beneficial since it can cut costs and the time it takes for experimental assays. The current study aims to test the hypothesis that there is a correlation between the biocompatibility of a composite scaffold and the molecular dynamics simulations of protein adhesion. To this end, chitosan and gelatin were selected for fabricating a composite skin-tissue wound scaffold with five different polymer ratios. This polymeric blend has not been simulated for protein adhesion. The cell proliferation and viability of the samples were quantified via MTT assay using fibroblast cells. Then a series of molecular dynamics simulations were performed to measure the adhesion energy of two prominent extracellular matrix proteins - fibronectin, and collagen type I. Besides, a higher gelatin percentage in the scaffold leads to a decrease in the porosity. The results demonstrated a strong correlation between the experimental data and molecular dynamics simulations. The sample with equal amounts of chitosan and gelatin had the highest cell viability and the strongest adhesion energy, of 239 kcal mol-1 for collagen type I, and 149 kcal mol-1 for fibronectin. This correlation was also evident in other samples: samples with gelatin-to-chitosan ratios of 3 : 1 and 1 : 3 had the lowest cell viability and the weakest adhesion energy, respectively.


Subject(s)
Chitosan , Chitosan/chemistry , Fibronectins , Gelatin/chemistry , Collagen Type I , Tissue Engineering/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...