Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 99(17): 172501, 2007 Oct 26.
Article in English | MEDLINE | ID: mdl-17995322

ABSTRACT

Electromagnetic transition probabilities have been measured for the intraband and interband transitions in the two sequences in the nucleus (135)Nd that were previously identified as a composite chiral pair of rotational bands. The chiral character of the bands is affirmed and it is shown that their behavior is associated with a transition from a vibrational into a static chiral regime.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(3 Pt 2): 036709, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16605700

ABSTRACT

Absorbing boundary conditions are often employed in time-dependent mean-field calculations to cope with the problem of emitted particles which would otherwise return back onto the system and falsify the dynamical evolution. We scrutinize two widely used methods, imaginary potentials and gradual attenuation by a mask function. To that end, we consider breathing oscillations of a nucleus computed on a radial one-dimensional grid in coordinate space. The most critical test case is the computation of resonance spectra in the (linear) domain of small amplitude motion. Absorbing bounds turn out to provide a reliable alternative to fully fledged continuum random phase approximation (RPA) calculations, although rather large absorbing bounds are required to simulate reliably well continuum conditions. We also investigate the computation of observables in the nonlinear domain. This regime turns out to be less demanding. Smaller absorbing margin suffice to achieve the wanted absorption effect.

3.
Phys Rev Lett ; 91(18): 182501, 2003 Oct 31.
Article in English | MEDLINE | ID: mdl-14611278

ABSTRACT

Evidence is presented for multiphonon excitations based on a high-spin (25 Planck) intrinsic state in the deformed nucleus 182 Os. Angular momentum generation by this mode competes with collective rotation. The experimental data are compared with tilted-axis cranking calculations, supporting the vibrational interpretation. However, the lower experimental energies provide evidence that more complex interactions of states are playing a role.

4.
Phys Rev Lett ; 86(4): 604-7, 2001 Jan 22.
Article in English | MEDLINE | ID: mdl-11177892

ABSTRACT

The spectroscopic quadrupole moment of the high-spin, high- K five-quasiparticle isomer (K(pi) = 35/2(-), T(1/2) = 750(80) ns, E(i) = 3349 keV) in (179)W has been determined using the level mixing spectroscopy method. A value Q(s) = 4.00(+0.83-1.06)e b was derived, which corresponds to an intrinsic quadrupole moment Q0 = 4.73(+0.98-1.25)e b and to a quadrupole deformation beta(2) = 0.185(+0.038-0.049). These values differ significantly from the deduced ground-state quadrupole moments and are in disagreement with the current theoretical predictions in this mass region.

SELECTION OF CITATIONS
SEARCH DETAIL
...