Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Future Med Chem ; 10(5): 527-540, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29424562

ABSTRACT

AIM: Cancer has emerged as a growing public health problem in many parts of the world. METHODOLOGY: We describe the synthesis of a series of carbohydrate-based isoquinoline-5,8-diones through the 1,4-addition reaction between 5,8-dioxo-5,8-dihydroisoquinoline and aminocarbohydrates. Halogenated quinones were also synthesized. Their inhibitory effects on the proliferation of human cancer cell lines were studied. RESULTS & CONCLUSION: The most promising compound, derived from isoquinoline-5,8-dione, containing ribofuranosidyl ring, was selectively active in vitro against H1299 cancer cells, with 1.7-fold higher activity than that of vinorelbine tartrate. This result suggests that the glycoconjugate in question may constitute a valuable lead compound to design and synthesize a more active and less toxic derivative with respect to the development of a new antitumor substance.


Subject(s)
Antineoplastic Agents/pharmacology , Carbohydrates/pharmacology , Isoquinolines/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Carbohydrates/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Chlorocebus aethiops , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Isoquinolines/chemistry , Molecular Structure , Structure-Activity Relationship , Vero Cells
2.
Mutagenesis ; 31(1): 107-14, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26275420

ABSTRACT

In Saccharomyces cerevisiae, disruption of genes by deletion allowed elucidation of the molecular mechanisms of a series of human diseases, such as in Wilson disease (WD). WD is a disorder of copper metabolism, due to inherited mutations in human copper-transporting ATPase (ATP7B). An orthologous gene is present in S. cerevisiae, CCC2 gene. Copper is required as a cofactor for a number of enzymes. In excess, however, it is toxic, potentially carcinogenic, leading to many pathological conditions via oxidatively generated DNA damage. Deficiency in ATP7B (human) or Ccc2 (yeast) causes accumulation of intracellular copper, favouring the generation of reactive oxygen species. Thus, it becomes important to study the relative importance of proteins involved in the repair of these lesions, such as Ogg1. Herein, we addressed the influence Ogg1 repair in a ccc2 deficient strain of S. cerevisiae. We constructed ccc2-disrupted strains from S. cerevisiae (ogg1ccc2 and ccc2), which were analysed in terms of viability and spontaneous mutator phenotype. We also investigated the impact of 4-nitroquinoline-1-oxide (4-NQO) on nuclear DNA damage and on the stability of mitochondrial DNA. The results indicated a synergistic effect on spontaneous mutagenesis upon OGG1 and CCC2 double inactivation, placing 8-oxoguanine as a strong lesion-candidate at the origin of spontaneous mutations. The ccc2 mutant was more sensitive to cell killing and to mutagenesis upon 4-NQO challenge than the other studied strains. However, Ogg1 repair of exogenous-induced DNA damage revealed to be toxic and mutagenic to ccc2 deficient cells, which can be due to a detrimental action of Ogg1 on DNA lesions induced in ccc2 cells. Altogether, our results point to a critical and ambivalent role of BER mediated by Ogg1 in the maintenance of genomic stability in eukaryotes deficient in CCC2 gene.


Subject(s)
4-Nitroquinoline-1-oxide/toxicity , Cation Transport Proteins/genetics , DNA Damage , DNA Glycosylases/metabolism , DNA Repair , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Copper/metabolism , Copper Transport Proteins , DNA, Fungal/drug effects , DNA, Fungal/metabolism , Gene Deletion , Guanine/analogs & derivatives , Guanine/metabolism , Saccharomyces cerevisiae/drug effects
3.
J Biomed Biotechnol ; 2010: 197898, 2010.
Article in English | MEDLINE | ID: mdl-20508844

ABSTRACT

Papain, a phytotherapeutic agent, has been used in the treatment of eschars and as a debriding chemical agent to remove damaged or necrotic tissue of pressure ulcers and gangrene. Its benefits in these treatments are deemed effective, since more than 5000 patients, at the public university hospital at Rio de Janeiro, Brazil, have undergone papain treatment and presented satisfactory results. Despite its extensive use, there is little information about toxic and mutagenic properties of papain. This work evaluated the toxic and mutagenic potential of papain and its potential antioxidant activity against induced-H(2)O(2) oxidative stress in Escherichia coli strains. Cytotoxicity assay, Growth inhibition test, WP2-Mutoxitest and Plasmid-DNA treatment, and agarose gel electrophoresis were used to investigate if papain would present any toxic or mutagenic potential as well as if papain would display antioxidant properties. Papain exhibited negative results for all tests. This agent presented an activity protecting cells against H(2)O(2)-induced mutagenesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...