Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 106(12): 8611-8626, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37641244

ABSTRACT

We evaluated the effects of supplementing bacterial direct-fed microbial (DFM) on performance, apparent total-tract digestibility, rumen fermentation, and immune parameters of lactating dairy cows. One hundred fourteen multiparous Holstein cows (41 ± 7 DIM) were used in a randomized complete block design with an experiment comprising 14 d of a covariate (pre-experimental sample and data collection) and 91 d of an experimental period. Cows were blocked based on energy-corrected milk (ECM) yield during the covariate period and the following treatments were randomly assigned within each block: (1) control (CON), corn silage-based total mixed ration without DFM; (2) PRO-A, basal diet top-dressed with a mixture of Lactobacillus animalis and Propionibacterium freudenreichii at 3 × 109 cfu/d; and 3) PRO-B, basal diet top-dressed with a mixture of L. animalis, P. freudenreichii, Bacillus subtilis, and Bacillus licheniformis at 11.8 × 109 cfu/d. Milk yield, dry matter intake (DMI), and body weight were measured daily, while milk samples for component analysis were taken on 2 consecutive days of each week of data collection. Feces, urine, rumen, and blood samples were taken during the covariate period, wk 4, 7, 10, and 13 for estimation of digestibility, N-partitioning, rumen fermentation, plasma nutrient status and immune parameters. Treatments had no effect on DMI and milk yield. Fat-corrected milk (3.5% FCM) and milk fat yield were improved with PRO-B, while milk fat percent and feed efficiency (ECM/DMI) tended to increase with PRO-B compared with PRO-A and CON. Crude fat digestibility was greater with PRO-B compared with CON. Feeding CON and PRO-A resulted in higher total volatile fatty acid concentration relative to PRO-B. Percentage of neutrophils tended to be reduced with PRO-A compared with CON and PRO-B. The mean fluorescence intensity (MFI) of anti-CD44 antibody on granulocytes tended to be higher in PRO-B compared with CON. The MFI of anti-CD62L antibody on CD8+ T cells was lower in PRO-A than PRO-B, with PRO-A also showing a tendency to be lower than CON. This study indicates the potential of DFM to improve fat digestibility with consequential improvement in fat corrected milk yield, feed efficiency and milk fat yield by lactating dairy cows. The study findings also indicate that dietary supplementation with DFM may augment immune parameters or activation of immune cells, including granulocytes and T cells; however, the overall effects on immune parameters are inconclusive.


Subject(s)
Animal Feed , Lactation , Female , Cattle , Animals , Lactation/physiology , Animal Feed/analysis , Milk , Diet/veterinary , Digestion , Dietary Supplements/analysis , Rumen
2.
J Dairy Sci ; 105(3): 2228-2241, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34998571

ABSTRACT

We evaluated the effects of supplemental calcium ammonium nitrate (CAN) fed to dairy cows on dry matter (DM) intake, nutrient digestibility, milk quality, microbial protein synthesis, and ruminal fermentation. Six multiparous Holstein cows at 106 ± 14.8 d in milk, with 551 ± 21.8 kg of body weight were used in a replicated 3 × 3 Latin square design. Experimental period lasted 21 d, with 14 d for an adaptation phase and 7 d for sampling and data collection. Cows were randomly assigned to receive the following treatments: URE, 12 g of urea/kg of DM as a control group; CAN15, 15 g of CAN/kg of DM; and CAN30, 30 g of CAN/kg of DM. Supplemental CAN reduced DM intake (URE 19.0 vs. CAN15 18.9 vs. CAN30 16.5 kg/d). No treatment effects were observed for apparent digestibility of DM, organic matter, crude protein, ether extract, and neutral detergent fiber; however, CAN supplementation linearly increased nonfiber carbohydrate digestibility. Milk yield was not affected by treatments (average = 23.1 kg/d), whereas energy-corrected milk (ECM) and 3.5% fat-corrected milk (FCM) decreased as the levels of CAN increased. Nitrate residue in milk increased linearly (URE 0.30 vs. CAN15 0.33 vs. CAN30 0.38 mg/L); however, treatments did not affect nitrite concentration (average: 0.042 mg/L). Milk fat concentration was decreased (URE 3.39 vs. CAN15 3.35 vs. CAN30 2.94%), and the proportion of saturated fatty acids was suppressed by CAN supplementation. No treatment effects were observed on the reducing power and thiobarbituric acid reactive substances of milk, whereas conjugated dienes increased linearly (URE 47.6 vs. CAN15 52.7 vs. CAN30 63.4 mmol/g of fat) with CAN supplementation. Treatments had no effect on microbial protein synthesis; however, molar proportion of ruminal acetate and acetate-to-propionate ratio increased with CAN supplementation. Based on the results observed, supplementing CAN at 30 g/kg of DM should not be recommended as an optimal dose because it lowered DM intake along with ECM and 3.5% FCM, although no major changes were observed on milk quality and ruminal fermentation.


Subject(s)
Milk , Nitrates , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Digestion , Eating , Female , Fermentation , Lactation , Milk/chemistry , Nitrates/pharmacology , Quaternary Ammonium Compounds , Rumen/metabolism
3.
J Dairy Sci ; 104(12): 12580-12599, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34593226

ABSTRACT

Objectives were to determine the effects of 3 different levels of dietary cation-anion difference (DCAD) fed during the last 22 d of gestation to pregnant nulliparous cows on pre- and postpartum acid-base balance, mineral metabolism, and health responses. In all, 132 pregnant nulliparous Holstein cows were enrolled at 250 (248-253) d of gestation, blocked by genomic merit of energy-corrected milk yield, and assigned randomly to diets varying in DCAD: +200 (P200, n = 43), -50 (N50, n = 45), or -150 (N150, n = 44) mEq/kg of dry matter. Dietary treatments were fed until calving, after which cows received the same lactation diet for the first 100 d postpartum. Urine and blood were sampled throughout the prepartum period and in the first weeks postpartum, and urine was assessed for pH, whereas blood was analyzed for gases, measures of acid-base balance, minerals, and metabolites. Calcium (Ca) and magnesium (Mg) retention and phosphorus (P) digestibility were evaluated in the last week of gestation and first week of lactation. Incidence of diseases was evaluated for the first 100 d postpartum. Data are presented in sequence as P200, N50, N150 (LSM ± SEM). Reducing the DCAD reduced urine (8.17 vs. 6.50 vs. 5.51 ± 0.11) and blood pH (7.442 vs. 7.431 vs. 7.410 ± 0.004) and induced a state of compensated metabolic acidosis with a reduction in blood HCO3- (28.4 vs. 26.7 vs. 24.9 ± 0.3 mM) and partial pressure of CO2 (41.8 vs. 40.1 vs. 39.1 ± 0.4 mmHg) prepartum. Reducing the DCAD linearly increased blood ionized Ca (iCa; 1.224 vs. 1.243 vs. 1.259 ± 0.008 mM) and serum total Ca (tCa; 2.50 vs. 2.53 vs. 2.56 ± 0.02 mM) prepartum, blood iCa on the day of calving, and serum Mg in the first days postpartum. Reducing the DCAD linearly increased the apparent absorption of Ca (12.9 vs. 19.0 vs. 20.9 ± 1.4 g/d) and Mg (7.0 vs. 9.9 vs. 10.4 ± 1.4 g/d) prepartum, but apparent retention of both Ca (13.9 g/d) and Mg (3.4 g/d) did not differ with treatment. Treatment did not affect digestibility of P pre- or postpartum or retention of Ca or Mg postpartum. Treatment did not affect the incidence or prevalence of subclinical hypocalcemia, hepatic composition, or the prevalence of fatty liver. Reducing the DCAD had a quadratic effect on incidence of fever (46.5 vs. 17.6 vs. 33.9 ± 7.0%), uterine diseases (36.3 vs. 25.6 vs. 46.0 ± 7.3%), and morbidity (41.4 vs. 28.1 vs. 55.6 ± 7.3%). Feeding a diet with -50 mEq/kg of dry matter promoted moderate changes in acid-base balance, altered mineral metabolism, and benefited health of nulliparous cows; however, further reducing the DCAD to -150 mEq/kg negated the benefits to health.


Subject(s)
Acid-Base Equilibrium , Animal Feed , Animal Feed/analysis , Animals , Anions , Calcium/metabolism , Cations , Cattle , Diet/veterinary , Female , Lactation , Minerals , Postpartum Period , Pregnancy
4.
J Dairy Sci ; 104(11): 11699-11714, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34389146

ABSTRACT

Objectives were to determine the effects of 3 levels of dietary cation-anion difference (DCAD) fed prepartum to nulliparous cows on productive and reproductive performance. We enrolled 132 pregnant nulliparous Holstein cows at 250 (248-253) d of gestation in a randomized block design. Cows were blocked by genomic merit of energy-corrected milk yield and assigned randomly to diets varying in DCAD, +200 (P200; n = 43), -50 (N50; n = 45), or -150 (N150; n = 44) mEq/kg of dry matter (DM). Dietary treatments were fed during the last 22 d of gestation and, after calving, postpartum cows received the same lactation diet. Productive performance was evaluated for the first 14 wk of lactation, and reproduction was assessed until 305 d postpartum. Intake of DM prepartum decreased linearly (results presented in sequence as least squares means ± standard error of the mean, P200 vs. N50 vs. N150) with a reduction in DCAD (9.0 vs. 8.9 vs. 8.4 ± 0.1 kg/d), which resulted in linear decreases in net energy balance (0.34 vs. 0.20 vs. -0.36 ± 0.20 Mcal/d), body weight change (1.1 vs. 0.8 vs. 0.3 ± 0.1 kg/d), and mean body weight (652 vs. 649 vs. 643 ± 2 kg) prepartum. Treatment did not affect yield of colostrum (6.3 vs. 5.8 vs. 5.1 ± 0.6 kg) or the contents or yields of fat, protein, lactose, IgG, Ca, or Mg in colostrum. Intake of DM (19.4 vs. 19.2 vs. 19.0 ± 0.2 kg/d), yields of milk (36.6 vs. 36.7 vs. 35.8 ± 0.6 kg/d) or energy-corrected milk (36.7 vs. 36.3 vs. 35.9 ± 0.5 kg/d), feed efficiency (1.93 vs. 1.92 vs. 1.93 ± 0.03 kg of energy-corrected milk per kilogram of DM intake), and content and yield of milk components did not differ among treatments during the first 14 wk of lactation. Prepartum DCAD did not affect the cumulative milk yield by 305 d of lactation (9,653 vs. 10,005 vs. 9,918 ± 196 kg). Of the 132 cows, 40 P200, 45 N50, and 43 N150 received at least 1 artificial insemination (AI), and treatment did not affect pregnancy per AI at first (32.5 vs. 35.6 vs. 37.2%) or all AI (30.6 vs. 33.9 vs. 40.2%), although reducing the DCAD increased the proportion of cows pregnant by 305 d postpartum (76.7 vs. 88.9 vs. 93.2%) without altering the rate of pregnancy. Collectively, manipulating the DCAD of prepartum diets, from +200 to -150 mEq/kg of DM, fed to late gestation nulliparous cows did not affect subsequent lactation productive performance, but may have provided some benefit to reproduction, which warrants further confirmation.


Subject(s)
Animal Feed , Lactation , Animal Feed/analysis , Animals , Anions , Cations , Cattle , Diet/veterinary , Female , Milk , Parity , Postpartum Period , Pregnancy
5.
J Dairy Sci ; 104(8): 8746-8764, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34053764

ABSTRACT

The objectives were to determine the effects of dietary cation-anion difference (DCAD) fed to pregnant cows during the last 22 d of gestation on offspring acid-base balance, metabolism, growth, and health preweaning. A total of 132 nulliparous Holstein cows were enrolled at 250 (248 to 253) d of gestation in a randomized block design. Cows were blocked by genomic merit of energy-corrected milk yield and assigned randomly to diets varying in DCAD: +200 (P200, n = 43), -50 (N50, n = 45), or -150 (N150, n = 44) mEq/kg of dry matter (DM). Newborn calves (15 males and 28 females in P200, 22 males and 23 females in N50, and 18 males and 26 females in N150) were followed for the first 7 or 56 d of age if males or females, respectively. Measures of acid-base balance and concentrations of minerals in blood were measured in all calves on d 0 before colostrum feeding, and on d 1, 3, and 7. Each calf was fed 3.78 L of colostrum from the respective treatment, and apparent efficiency of IgG absorption was determined. All calves were weighed at birth, and females were weighed again at 21, 42, and 56 d of age. Concentrations in serum of total calcium (tCa), total magnesium (tMg), and total phosphorus (tP) were measured up to 56 d of age; intakes of milk and starter grain DM were measured daily from 21 to 56 d of age; and incidence of disease was recorded for the first 56 d of age in females. Treatment did not affect acid-base balance measured in all calves. Calves were born with metabolic and respiratory acidosis, which reversed by 1 d of age. In the first 24 h after birth, blood pH increased from 7.215 to 7.421 and bicarbonate from 26.2 to 31.7 mM, whereas partial pressure of CO2 decreased from 64.1 to 48.7 mm of Hg in all treatments. Maternal DCAD did not affect colostrum IgG content fed to calves (P200 = 95.0 vs. N50 = 91.0 vs. N150 = 97.1 ± 4.1 g/L) or apparent efficiency of IgG absorption (P200 = 33.1 vs. N50 = 33.1 vs. N150 = 34.2 ± 1.9%). Males were born heavier than females, but maternal DCAD did not affect birth weight of all calves (P200 = 37.7 vs. N50 = 37.3 vs. N150 = 37.8 ± 0.7 kg) or daily weight gain in females in the first 56 d of life (P200 = 0.80 vs. N50 = 0.81 vs. N150 = 0.77 ± 0.03 kg/d). Treatment did not affect intake of milk (P200 = 1.11 vs. N50 = 1.04 vs. N150 = 1.19 ± 0.06 kg/d) or starter grain DM (P200 = 0.27 vs. N50 = 0.27 vs. N150 = 0.21 ± 0.06 kg/d), or measures of feed efficiency. Treatment did not affect concentrations of minerals in serum, morbidity, or age at morbidity. Manipulating the DCAD of pregnant nulliparous dams during late gestation did not affect offspring performance in the first 2 mo of age.


Subject(s)
Acid-Base Equilibrium , Animal Feed , Animal Feed/analysis , Animals , Anions , Cations , Cattle , Diet/veterinary , Female , Lactation , Male , Milk , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...