Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Hypertension ; 81(2): 203-205, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37750306

Subject(s)
Hypertension , Renin , Humans
2.
J Cachexia Sarcopenia Muscle ; 13(4): 2175-2187, 2022 08.
Article in English | MEDLINE | ID: mdl-35582969

ABSTRACT

BACKGROUND: Fetal stage is a critical developmental window for the skeletal muscle, but little information is available about the impact of maternal vitamin D (Vit. D) deficiency (VDD) on offspring lean mass development in the adult life of male and female animals. METHODS: Female rats (Wistar Hannover) were fed either a control (1000 IU Vit. D3/kg) or a VDD diet (0 IU Vit. D3/kg) for 6 weeks and during gestation and lactation. At weaning, male and female offspring were randomly separated and received a standard diet up to 180 days old. RESULTS: Vitamin D deficiency induced muscle atrophy in the male (M-VDD) offspring at the end of weaning, an effect that was reverted along the time. Following 180 days, fast-twitch skeletal muscles [extensor digitorum longus (EDL)] from the M-VDD showed a decrease (20%; P < 0.05) in the number of total fibres but an increase in the cross-sectional area of IIB (17%; P < 0.05), IIA (19%; P < 0.05) and IIAX (21%; P < 0.05) fibres. The fibre hypertrophy was associated with the higher protein levels of MyoD (73%; P < 0.05) and myogenin (55% %; P < 0.05) and in the number of satellite cells (128.8 ± 14 vs. 91 ± 7.6 nuclei Pax7 + in the M-CTRL; P < 0.05). M-VDD increased time to fatigue during ex vivo contractions of EDL muscles and showed an increase in the phosphorylation levels of IGF-1/insulin receptor and their downstream targets related to anabolic processes and myogenic activation, including Ser 473 Akt and Ser 21/9 GSK-3ß. In such muscles, maternal VDD induced a compensatory increase in the content of calcitriol (two-fold; P < 0.05) and CYP27B1 (58%; P < 0.05), a metabolizing enzyme that converts calcidiol to calcitriol. Interestingly, most morphological and biochemical changes found in EDL were not observed in slow-twitch skeletal muscles (soleus) from the M-VDD group as well as in both EDL and soleus muscles from the female offspring. CONCLUSIONS: These data show that maternal VDD selectively affects the development of type-II muscle fibres in male offspring rats but not in female offspring rats and suggest that the enhancement of their size and fatigue resistance in fast-twitch skeletal muscle (EDL) is probably due to a compensatory increase in the muscle content of Vit. D in the adult age.


Subject(s)
Muscle Fibers, Slow-Twitch , Vitamin D Deficiency , Animals , Calcitriol/analysis , Calcitriol/metabolism , Calcitriol/pharmacology , Female , Glycogen Synthase Kinase 3 beta/analysis , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/pharmacology , Male , Muscle Fibers, Fast-Twitch/physiology , Muscle Fibers, Slow-Twitch/physiology , Muscle, Skeletal/metabolism , Rats , Rats, Wistar , Vitamin D Deficiency/complications , Vitamin D Deficiency/metabolism
3.
Astrophys J Lett ; 912(1)2021 May 01.
Article in English | MEDLINE | ID: mdl-34257894

ABSTRACT

The chemical compounds carrying the thiol group (-SH) have been considered essential in recent prebiotic studies regarding the polymerization of amino acids. We have searched for this kind of compounds toward the Galactic Centre quiescent cloud G+0.693-0.027. We report the first detection in the interstellar space of the trans-isomer of monothioformic acid (t-HC(O)SH) with an abundance of ~ 1 × 10-10. Additionally, we provide a solid confirmation of the gauche isomer of ethyl mercaptan (g-C2H5SH) with an abundance of ~ 3 × 10-10, and we also detect methyl mercaptan (CH3SH) with an abundance of ~ 5 × 10-9. Abundance ratios were calculated for the three SH-bearing species and their OH-analogues, revealing similar trends between alcohols and thiols with increasing complexity. Possible chemical routes for the interstellar synthesis of t-HC(O)SH, CH3SH and C2H5SH are discussed, as well as the relevance of these compounds in the synthesis of prebiotic proteins in the primitive Earth.

4.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Article in English | MEDLINE | ID: mdl-34031247

ABSTRACT

Cell membranes are a key element of life because they keep the genetic material and metabolic machinery together. All present cell membranes are made of phospholipids, yet the nature of the first membranes and the origin of phospholipids are still under debate. We report here the presence of ethanolamine in space, [Formula: see text]OH, which forms the hydrophilic head of the simplest and second-most-abundant phospholipid in membranes. The molecular column density of ethanolamine in interstellar space is N = (1.51[Formula: see text]0.07)[Formula: see text], implying a molecular abundance with respect to [Formula: see text] of [Formula: see text] Previous studies reported its presence in meteoritic material, but they suggested that it is synthesized in the meteorite itself by decomposition of amino acids. However, we find that the proportion of the molecule with respect to water in the interstellar medium is similar to the one found in the meteorite ([Formula: see text]). These results indicate that ethanolamine forms efficiently in space and, if delivered onto early Earth, could have contributed to the assembling and early evolution of primitive membranes.


Subject(s)
Ethanolamine/analysis , Exobiology , Meteoroids
5.
Clin Sci (Lond) ; 134(6): 641-656, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32219345

ABSTRACT

Adverse events during fetal life such as insufficient protein intake or elevated transfer of glucocorticoid to the fetus may impact cardiovascular and metabolic health later in adult life and are associated with increased incidence of type 2 diabetes, ischemic heart disease and hypertension. Several adverse factors converge and suppress the fetal renin-angiotensin-aldosterone system (RAAS). The aim of this review is to summarize data on the significance of RAAS for kidney development and adult hypertension. Genetic inactivation of RAAS in rodents at any step from angiotensinogen to angiotensin II (ANGII) type 1 receptor (AT1) receptors or pharmacologic inhibition leads to complex developmental injury to the kidneys that has also been observed in human case reports. Deletion of the 'protective' arm of RAAS, angiotensin converting enzyme (ACE) 2 (ACE-2) and G-protein coupled receptor for Angiotensin 1-7 (Mas) receptor does not reproduce the AT1 phenotype. The changes comprise fewer glomeruli, thinner cortex, dilated tubules, thicker arterioles and arteries, lack of vascular bundles, papillary atrophy, shorter capillary length and volume in cortex and medulla. Altered activity of systemic and local regulators of fetal-perinatal RAAS such as vitamin D and cyclooxygenase (COX)/prostaglandins are associated with similar injuries. ANGII-AT1 interaction drives podocyte and epithelial cell formation of vascular growth factors, notably vascular endothelial growth factor (VEGF) and angiopoietins (Angpts), which support late stages of glomerular and cortical capillary growth and medullary vascular bundle formation and patterning. RAAS-induced injury is associated with lower glomerular filtration rate (GFR), lower renal plasma flow, kidney fibrosis, up-regulation of sodium transporters, impaired sodium excretion and salt-sensitive hypertension. The renal component and salt sensitivity of programmed hypertension may impact dietary counseling and choice of pharmacological intervention to treat hypertension.


Subject(s)
Angiotensins/metabolism , Kidney/growth & development , Renin-Angiotensin System , Renin/metabolism , Animals , Blood Pressure , Humans , Hypertension/genetics , Hypertension/metabolism , Hypertension/physiopathology , Kidney/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
6.
Front Med (Lausanne) ; 7: 23, 2020.
Article in English | MEDLINE | ID: mdl-32118008

ABSTRACT

Alterations in the renal vasculature during fetal programming can cause disturbances in renal structure and function that persist into adulthood. Calcitriol can affect cellular differentiation and proliferation, and promote endothelial cell maintenance, each of which is a key event in nephrogenesis. Calcitriol is a negative endocrine regulator of the renin gene. Rats exposed to renin-angiotensin system (RAS) antagonists during lactation have been shown to develop renal disorders, which demonstrated that the RAS may play an important role in mammalian kidney development. We evaluated the effects of calcitriol administration on losartan [angiotensin II receptor antagonist (ANGII), AT1]-induced changes in renal differentiation in rats during lactation. Rats treated with losartan showed alterations in renal function and structure that persisted into adulthood. These disruptions included hydronephrosis, papillary atrophy, endothelial dysfunction, and aberrant endothelial structure. These changes were mitigated by treatment with calcitriol. The results of our study showed that animals exposed to AT1 blockade during lactation exhibited altered renal microvasculature differentiation in adulthood that was attenuated by treatment with calcitriol.

7.
Kidney Blood Press Res ; 43(2): 582-593, 2018.
Article in English | MEDLINE | ID: mdl-29669331

ABSTRACT

BACKGROUND/AIMS: Physical training has beneficial effects on endothelial function and can influence the regeneration of the endothelial cell. We investigated the effect of physical training on cisplatin (CP)-induced acute kidney injury and assessed the impact of training on endothelial structure and function, and on the inflammatory processes in rats. METHODS: We injected male Wistar rats subjected to previous physical training in treadmill running (trained, TR) or not (sedentary, SED) with CP (5 mg/kg) (TR+CP and SED+CP groups, respectively). Five days after the injections, blood and urine samples were collected to evaluate renal function and kidneys were harvested for morphological, immunohistochemical, enzyme-linked immunosorbent assay, and analysis of nitric oxide (NO) levels. RESULTS: Rats treated with CP showed increased levels of plasma creatinine and sodium and potassium fractional excretion. These alterations were associated with increase in tubulointerstitial lesions and macrophage number, reduction of endothelial cells, and increased VEGF, vimentin, and α-smooth muscle actin expression in the outer renal medulla in the SED+CP group. We also found increased levels of renal IL-1ß and increased excretion of monocyte chemoattractant protein-1 and transforming growth factor-ß compared with controls. These changes were milder in trained rats, associated with increased levels of renal tissue NO, and increased expression of p-eNOS and stromal cell-derived factor-1α (a chemokine involved in kidney repair) in the kidneys of CP-injected trained rats. CONCLUSIONS: The protective effect of previous training in CP-treated rats was associated with reduced endothelial cell lesions and increased renal production of NO in trained rats.


Subject(s)
Acute Kidney Injury/chemically induced , Cisplatin/adverse effects , Endothelial Cells/pathology , Physical Conditioning, Animal , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Animals , Male , Nitric Oxide/biosynthesis , Nitric Oxide Synthase Type III/metabolism , Rats , Rats, Wistar
8.
Physiol Rep ; 5(6)2017 Mar.
Article in English | MEDLINE | ID: mdl-28336818

ABSTRACT

Excessive sodium (Na+) intake in modern society has been associated with several chronic disorders such as hypertension. Several studies suggest that early life events can program physiological systems and lead to functional changes in adulthood. Therefore, we investigated behavioral and neuroendocrine responses under basal conditions and after 48 h of water deprivation in adult (60-day-old Wistar rats) male, Wistar rats originating from dams were offered only water or 0.15 mol/L NaCl during pregnancy and lactation. Early life salt exposure induced kidney damage, as shown by a higher number of ED-1 positive cells (macrophages/monocytes), increased daily urinary volume and Na+ excretion, blunted basal water intake and plasma oxytocin levels, and increased plasma corticosterone secretion. When challenged with water deprivation, animals exposed to 0.15 mol/L NaCl during early life showed impaired water intake, reduced salt preference ratio, and vasopressin (AVP) secretion. In summary, our data demonstrate that the perinatal exposure to excessive Na+ intake can induce kidney injury in adult offspring and significantly affect the key mechanisms regulating water balance, fluid intake, and AVP release in response to water deprivation. Collectively, these novel results highlight the impact of perinatal programming on the homeostatic mechanisms regulating fluid and electrolyte balance during exposure to an environmental stress (i.e. dehydration) in later life.


Subject(s)
Behavior, Animal/drug effects , Corticosterone/blood , Kidney/drug effects , Oxytocin/blood , Prenatal Exposure Delayed Effects/metabolism , Sodium Chloride/pharmacology , Animals , Drinking/drug effects , Female , Kidney/metabolism , Lactation/physiology , Male , Pregnancy , Rats , Rats, Wistar , Urination/drug effects , Urination/physiology , Water Deprivation/physiology , Water-Electrolyte Balance/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...