Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(23)2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38067502

ABSTRACT

This work adopted a green synthesis route using cashew tree gum as a mediating agent to obtain Ni-doped ZnO nanoparticles through the sol-gel method. Structural analysis confirmed the formation of the hexagonal wurtzite phase and distortions in the crystal lattice due to the inclusion of Ni cations, which increased the average crystallite size from 61.9 nm to 81.6 nm. These distortions resulted in the growth of point defects in the structure, which influenced the samples' optical properties, causing slight reductions in the band gaps and significant increases in the Urbach energy. The fitting of the photoluminescence spectra confirmed an increase in the concentration of zinc vacancy defects (VZn) and monovacancies (Vo) as Zn cations were replaced by Ni cations in the ZnO structure. The percentage of VZn defects for the pure compound was 11%, increasing to 40% and 47% for the samples doped with 1% and 3% of Ni cations, respectively. In contrast, the highest percentage of VO defects is recorded for the material with the lowest Ni ions concentration, comprising about 60%. The influence of dopant concentration was also reflected in the photocatalytic performance. Among the samples tested, the Zn0.99Ni0.01O compound presented the best result in MB degradation, reaching an efficiency of 98.4%. Thus, the recovered material underwent reuse tests, revealing an efficiency of 98.2% in dye degradation, confirming the stability of the photocatalyst. Furthermore, the use of different inhibitors indicated that •OH radicals are the main ones involved in removing the pollutant. This work is valuable because it presents an ecological synthesis using cashew gum, a natural polysaccharide that has been little explored in the literature.

2.
Materials (Basel) ; 15(13)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35806684

ABSTRACT

TiO2/Karaya composite was synthesized by the sol-gel method for the photoinactivation of pathogens. This is the first time that we have reported this composite for an antimicrobial approach. The structure, morphology, and optical properties were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-rays (EDS), Fourier transform infrared spectroscopy (FTIR), and diffuse reflectance, and the surface area was characterized by the BET method. The XRD and EDS results showed that the TiO2/Karaya composite was successfully stabilized by the crystal structure and pore diameter distribution, indicating a composite of mesoporous nature. Furthermore, antibacterial experiments showed that the TiO2/Karaya composite under light was able to photoinactivate bacteria. Therefore, the composite is a promising candidate for inhibiting the growth of bacteria.

3.
Materials (Basel) ; 14(19)2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34640286

ABSTRACT

Ibuprofen (IBU) is one of the most-sold anti-inflammatory drugs in the world, and its residues can reach aquatic systems, causing serious health and environmental problems. Strategies are used to improve the photocatalytic activity of zinc oxide (ZnO), and thosethat involvethe inclusion of metalhave received special attention. The aim of this work was to investigate the influence of the parameters and toxicity of a photoproduct using zinc oxide that contains cerium (ZnO-Ce) for the photodegradation of ibuprofen. The parameters include the influence of the photocatalyst concentration (0.5, 0.5, and 1.5 g L-1) as well as the effects of pH (3, 7, and 10), the effect of H2O2, and radical scavengers. The photocatalyst was characterized by Scanning Electron Microscopy-Energy Dispersive Spectroscopy, Transmission electron microscopy, Raman, X-Ray Diffraction, surface area, and diffuse reflectance. The photocatalytic activity of ibuprofen was evaluated in an aqueous solution under UV light for 120 min. The structural characterization by XRD and SEM elucidated the fact that the nanoparticle ZnO contained cerium. The band gap value was 3.31 eV. The best experimental conditions for the photodegradation of IBU were 60% obtained in an acidic condition using 0.50 g L-1 of ZnO-Ce in a solution of 20 ppm of IBU. The presence of hydrogen peroxide favored the photocatalysis process. ZnO-Ce exhibited good IBU degradation activity even after three photocatalytic cycles under UV light. The hole plays akey role in the degradation process of ibuprofen. The toxicity of photolyzed products was monitored against Artemia salina (bioindicator) and did not generate toxic metabolites. Therefore, this work provides a strategic design to improve ZnO-Ce photocatalysts for environmental remediation.

4.
Dalton Trans ; 49(45): 16394-16403, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-32567613

ABSTRACT

Novel green photocatalysts based on ZnO in the presence of arabic gum (AGZ) or karaya gum (KGZ) were synthesized by a sol-gel method for photocatalytic performance. The materials were characterized by XRD, FTIR spectroscopy, SEM, nitrogen adsorption/desorption, and PL and diffuse reflectance spectroscopy. Photocatalytic test was performed using methylene blue (MB) dye as the target pollutant under visible light. The reuse of photocatalysts and Artemia saline bioassays were investigated. The ZnO nanoparticles showed a hexagonal structure and the values of the band gaps were 2.95 (AGZ) and 2.98 eV (KGZ). The PL results demonstrated emission bands at 440, 473 or 478 and 549 nm. The textural properties indicated the presence of typically mesoporous materials. The MB discoloration efficiency was 81.5% and 91.0% for AGZ and KGZ, respectively. The photocatalytic activity of AGZ and KGZ was maintained after the third run. The ˙OH radicals are the main species involved in the MB discoloration. The MB discoloration from the photocatalysts showed no toxicity; therefore, they are considered to be promising materials for the degradation of the dye in the photocatalytic process.

5.
Int J Biol Macromol ; 165(Pt B): 2813-2822, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33736284

ABSTRACT

Flowers-like ZnO structures were synthesized using Arabic Gum (AGZnO) or Karaya Gum (KGZnO). The AGZnO and KGZnO were characterized by X-ray diffractometry, Fourier Transformed Infrared, Scanning Electron Microscopy, Photoluminescence, nitrogen adsorption/desorption and diffuse reflectance techniques. The materials were tested in the discoloration of Methylene Blue (MB) dye under visible light and scavenger studies were also performed. The toxicity of the MB irradiated was investigated in bioassays with Artemia salina. The structural characterization demonstrated the formation of hexagonal ZnO. All samples presented flower-like morphology with presence of mesopores identified by BET method. The optical properties indicated band gap of 2.99 (AGZnO) and 2.76 eV (KGZnO), and emission in violet, blue and green emissions also were observed. The KGZnO demonstrated better photocatalytic performance than the AGZnO, and scavenger studies indicated that OH radicals are the main species involved in the degradation of the pollutant model. The photodiscoloration of MB solution did not demonstrate toxicity. Therefore, KGZnO is a promising material for photocatalysis application.


Subject(s)
Artemia/growth & development , Gum Arabic/chemistry , Karaya Gum/chemistry , Methylene Blue/analysis , Zinc Oxide/chemistry , Adsorption , Animals , Artemia/drug effects , Catalysis , Green Chemistry Technology , Light , Materials Testing , Microscopy, Electron, Scanning , Molecular Structure , Photolysis , X-Ray Diffraction , Zinc Oxide/pharmacology
6.
Nanotechnology ; 27(28): 285401, 2016 Jul 15.
Article in English | MEDLINE | ID: mdl-27251109

ABSTRACT

Hydrogen fuels generated by water splitting using a photocatalyst and solar irradiation are currently gaining the strength to diversify the world energy matrix in a green way. CdS quantum dots have revealed a hydrogen generation improvement when added to TiO2 materials under visible-light irradiation. In the present paper, we investigated the performance of TiO2 nanotubes coupled with CdS quantum dots, by a molecular bifunctional linker, on photocatalytic hydrogen generation. TiO2 nanotubes were obtained by anodization of Ti foil, followed by annealing to crystallize the nanotubes into the anatase phase. Afterwards, the samples were sensitized with CdS quantum dots via an in situ hydrothermal route using 3-mercaptopropionic acid as the capping agent. This sensitization technique permits high loading and uniform distribution of CdS quantum dots onto TiO2 nanotubes. The XPS depth profile showed that CdS concentration remains almost unchanged (homogeneous), while the concentration relative to the sulfate anion decreases by more than 80% with respect to the initial value after ∼100 nm in depth. The presence of sulfate anions is due to the oxidation of sulfide and occurs in greater proportion in the material surface. This protection for air oxidation inside the nanotubular matrix seemingly protected the CdS for photocorrosion in sacrificial solution leading to good stability properties proved by long duration, stable photocurrent measurements. The effect of the size and the distribution of sizes of CdS quantum dots attached to TiO2 nanotubes on the photocatalytic hydrogen generation were investigated. The experimental results showed three different behaviors when the reaction time of CdS synthesis was increased in the sensitized samples, i.e. similar, deactivation and activation effects on the hydrogen production with regard to TiO2 nanotubes. The deactivation effect was related to two populations of sizes of CdS, where the population with a shorter band gap acts as a trap for the electrons photogenerated by the population with a larger band gap. Electron transfer from CdS quantum dots to TiO2 semiconductor nanotubes was proven by the results of UPS measurements combined with optical band gap measurements. This property facilitates an improvement of the visible-light hydrogen evolution rate from zero, for TiO2 nanotubes, to approximately 0.3 µmol cm(-2) h(-1) for TiO2 nanotubes sensitized with CdS quantum dots.

SELECTION OF CITATIONS
SEARCH DETAIL
...