Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38719973

ABSTRACT

This study aimed to evaluate the effect of including soybean molasses (SM) on performance, blood parameters, carcass traits, meat quality, fatty acid, and muscle (longissimus thoracis) transcriptomic profiles of castrated lambs. Twenty Dorper × Santa Inês lambs (20.06 ±â€…0.76 kg body weight [BW]) were assigned to a randomized block design, stratified by BW, with the following treatments: CON: 0 g/kg of SM and SM20: 200 g/kg of SM on dry matter basis, allocated in individual pens. The diet consisted of 840 g/kg concentrate and 160 g/kg corn silage for 76 d, with the first 12 d as an adaptation period and the remaining 64 d on the finishing diet. The SM20 diet increased blood urea concentration (P = 0.03) while reduced glucose concentration (P = 0.04). Lambs fed SM showed higher subcutaneous fat deposition (P = 0.04) and higher subcutaneous adipocyte diameter (P < 0.01), in addition to reduced meat lipid oxidation (P < 0.01). SM reduced the quantity of branched-chain fatty acids in longissimus thoracis (P = 0.05) and increased the quantity of saturated fatty acids (P = 0.01). In the transcriptomic analysis, 294 genes were identified as differentially expressed, which belong to pathways such as oxidative phosphorylation, citric acid cycle, and monosaccharide metabolic process. In conclusion, diet with SM increased carcass fat deposition, reduced lipid oxidation, and changed the energy metabolism, supporting its use in ruminant nutrition.


This study investigated the effects of incorporating soybean molasses (SM) into the diet of castrated lambs on various aspects of their performance and meat quality. Twenty lambs were divided into two groups: one was fed a control diet without SM whereas the other was fed a similar diet but containing 20% of SM. The feeding trial lasted for 76 d. Results showed that the SM inclusion in the diet led to increased blood urea levels and decreased glucose concentrations. SM inclusion also resulted in lambs with higher levels of subcutaneous fat and larger adipocytes, while reducing meat lipid oxidation. Moreover, SM altered fatty acid composition in the meat, decreasing branched-chain fatty acids and increasing saturated fatty acids. In agreement with these findings, transcriptomic analysis revealed a significant change in the expression of genes related to energy metabolism in the muscle of lambs fed SM. In conclusion, incorporating SM in lamb's diet increased fat deposition, improved meat quality, and induced a transcriptomic change in the muscle energy metabolism, supporting its potential use in ruminant nutrition.


Subject(s)
Animal Feed , Diet , Glycine max , Lipid Metabolism , Meat , Molasses , Subcutaneous Fat , Animals , Animal Feed/analysis , Diet/veterinary , Glycine max/chemistry , Subcutaneous Fat/metabolism , Subcutaneous Fat/drug effects , Male , Meat/analysis , Lipid Metabolism/drug effects , Sheep , Animal Nutritional Physiological Phenomena , Fatty Acids/metabolism , Random Allocation , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Oxidation-Reduction , Sheep, Domestic , Dietary Supplements/analysis
2.
Transl Anim Sci ; 5(1): txaa230, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33506182

ABSTRACT

Soybean molasses (SBM) is a byproduct of the manufacture of soy protein concentrate and has high energy value. This byproduct has a high potential for use in the nutrition of ruminant animals, mainly in the replacement of other energy feeds such as corn grain. The objective of this study was to evaluate the inclusion of SBM to replace corn grain up to 30% dry matter (DM) in the total diet on growth performance, feeding behavior, carcass characteristics, and meat quality of feedlot lambs (½ Santa Inês × ½ Dorper). Forty intact male lambs with an initial average body weight of 20.6 ± 2.5 kg and approximate age of 120 d were used. The animals were distributed in four treatments (0%, 10%, 20%, and 30% SBM), divided into five randomized blocks according to the initial weight and adapted for 16 d, with diets containing increasing concentrations of concentrate and SBM. Feeding behavior was analyzed at the beginning, middle, and final of the finishing period, and when animals reached 42 d on the finishing diet they were slaughtered. Data were evaluated using SAS software (version 9.4), by polynomial orthogonal contrasts, where the growth performance, carcass characteristics, and meat quality values were analyzed as randomized blocks, and the feeding behavior data as randomized blocks with a repeated measure over time. Significant differences were detected for the contrast 0 vs. SBM treatments, which the inclusion of SBM caused an increase (P ≤ 0.05) in ash intake but decreased the ether extract intake. The intake of DM in % body weight was higher for SBM treatments than 0% treatment (P ≤ 0.05). Feeding behavior, ruminating while lying down and drinking water presented a decreasing linear effect (P ≤ 0.05), and for feeding, efficiency increased with the addition of SBM (P ≤ 0.05). Fatty acids C14:0, C17:0, C17:1, C18:2n6c, C20:2, and C20:3n6 showed lower values ​​with the inclusion of SBM (P ≤ 0.05), while fatty acids C22:0 and C22:6n3 increased. The values ​​of n6 polyunsaturated fatty acids and n-6/n-3 ratio were lower (P ≤ 0.05) for SBM treatments. The values ​​of total polyunsaturated fatty acids showed a decreasing linear effect (P ≤ 0.05) with the inclusion of SBM. The use of up to 30% SBM in DM did not impair animal growth performance and feeding behavior did not cause damages to carcass parameters and still made the meat healthier, improving the n-6/n-3 ratio, therefore can be used to feed finishing lambs.

3.
J Anim Physiol Anim Nutr (Berl) ; 103(4): 988-996, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31172562

ABSTRACT

The effects of adding crude glycerine with sodium monensin or essential oils to beef cattle diets on the intake, degradability of DM and nutrients, rumen concentration of volatile fatty acids (VFA) and in vitro gas production were evaluated. Five ruminally cannulated Nellore steers were randomly assigned to a 5 × 5 Latin square design. The treatments were as follows: CONT, without crude glycerine and additives; EO, with essential oils and without crude glycerine; MON, with sodium monensin and without crude glycerine; EOG, with essential oils and crude glycerine; MONG, with sodium monensin and crude glycerine. Treatments with essential oil and sodium monensin increased the NDF and STC intake and the DM degradability. When crude glycerine was combined with either sodium monensin or essential oil, there was a reduction in DM, NDF and STC intake and an increase in DM and CP degradability of the diets. The adding crude glycerine to essential oil diets reduced the CH4 production. Sodium monensin treatments reduced DM and NDF intake and the production of total gas, CH4 , total VFA and acetic acid concentration. In conclusion, the adding crude glycerine (200 g/kg DM) with either sodium monensin (0.03 g/kg DM) or essential oil (0.5 g/kg DM) can be utilized in diets for Nellore cattle without causing detrimental effects on feed intake and improving the DM degradability.


Subject(s)
Animal Feed/analysis , Cattle/physiology , Diet/veterinary , Eating/drug effects , Glycerol/pharmacology , Rumen/physiology , Animal Nutritional Physiological Phenomena , Animals , Digestion/drug effects , Digestion/physiology , Fatty Acids, Volatile , Glycerol/administration & dosage , Housing, Animal , Monensin/administration & dosage , Oils, Volatile/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...