Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Braz J Microbiol ; 54(3): 2103-2116, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37594655

ABSTRACT

Canastra Minas Artisanal Cheese is produced in the Brazilian State of Minas Gerais using raw milk, rennet, and pingo, a natural endogenous starter culture (fermented whey) collected from the previous day's production. Due to the use of raw milk, the product can carry microorganisms that may cause foodborne diseases (FBD), including Staphylococcus aureus. Genomic characterization of S. aureus is an important tool to assess diversity, virulence, antimicrobial resistance, and the potential for causing food poisoning due to enterotoxin production. This study is aimed at exploring the genomic features of S. aureus strains isolated from Canastra Minas Artisanal Cheeses. Multilocus sequence typing (MLST) classified these strains as ST1, ST5, and a new profile ST7849 (assigned to the clonal complex CC97). These strains belonged to four spa types: t008, t127, t359, and t992. We identified antimicrobial resistance genes with phenotypic correlation against methicillin (MRSA) and tetracycline. Virulome analysis revealed genes associated with iron uptake, immune evasion, and potential capacity for adherence and biofilm formation. The toxigenic potential included cyto- and exotoxins genes, and all strains presented the genes that encode for Panton-Valentine toxin and hemolysin, and two strains encoded 4 and 8 Staphylococcal enterotoxin (SE) genes. The results revealed the pathogenic potential of the evaluated S. aureus strains circulating in the Canastra region, representing a potential risk to public health. This study also provides useful information to monitor and guide the application of control measures to the artisanal dairy food production chain.


Subject(s)
Cheese , Staphylococcal Infections , Humans , Staphylococcus aureus/genetics , Multilocus Sequence Typing , Genomics , Enterotoxins/genetics
2.
J Vis Exp ; (194)2023 04 07.
Article in English | MEDLINE | ID: mdl-37092836

ABSTRACT

Probiotics and prebiotics are of great interest to the food and pharmaceutical industries due to their health benefits. Probiotics are live bacteria that can confer beneficial effects on human and animal wellbeing, while prebiotics are types of nutrients that feed the beneficial gut bacteria. Powder probiotics have gained popularity due to the ease and practicality of their ingestion and incorporation into the diet as a food supplement. However, the drying process interferes with cell viability since high temperatures inactivate probiotic bacteria. In this context, this study aimed to present all the steps involved in the production and physicochemical characterization of a spray-dried probiotic and evaluate the influence of the protectants (simulated skim milk and inulin:maltodextrin association) and drying temperatures in increasing the powder yield and cell viability. The results showed that the simulated skim milk promoted higher probiotic viability at 80 °C. With this protectant, the probiotic viability, moisture content, and water activity (Aw) reduce as long as the inlet temperature increases. The probiotics' viability decreases conversely with the drying temperature. At temperatures close to 120 °C, the dried probiotic showed viability around 90%, a moisture content of 4.6% w/w, and an Aw of 0.26; values adequate to guarantee product stability. In this context, spray-drying temperatures above 120 °C are required to ensure the microbial cells' viability and shelf-life in the powdered preparation and survival during food processing and storage.


Subject(s)
Prebiotics , Probiotics , Animals , Humans , Powders , Microbial Viability , Bacteria
3.
Forensic Sci Res ; 8(3): 173-184, 2023 Sep.
Article in English | MEDLINE | ID: mdl-38221972

ABSTRACT

Microorganisms are widespread on the planet being able to adapt, persist, and grow in diverse environments, either rich in nutrient sources or under harsh conditions. The comprehension of the interaction between microorganisms and drugs is relevant for forensic toxicology and forensic chemistry, elucidating potential pathways of microbial metabolism and their implications. Considering the described scenario, this paper aims to provide a comprehensive and critical review of the state of the art of interactions amongst microorganisms and common drugs of abuse. Additionally, other drugs of forensic interest are briefly discussed. This paper outlines the importance of this area of investigation, covering the intersections between forensic microbiology, forensic chemistry, and forensic toxicology applied to drugs of abuse, and it also highlights research potentialities. Key points: Microorganisms are widespread on the planet and grow in a myriad of environments.Microorganisms can often be found in matrices of forensic interest.Drugs can be metabolized or produced (e.g. ethanol) by microorganisms.

4.
Arch Microbiol ; 204(4): 220, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35333989

ABSTRACT

Currently, consumption of spontaneously fermented milks is common in Algeria, making it a feasible source of diverse lactic acid bacteria (LAB) with the potential to be used as adjunct cultures to improve quality and safety of fermented dairy products. In this context, to select eligible indigenous strains which could be applied as bioprotective and/or starter cultures, the present study aimed to characterize the genomic variability, biotechnological potential, and safety of thirty-eight LAB isolated from Algerian dairy and farm sources of western Algeria. The isolates were unequivocally identified by 16S rRNA gene and fingerprint-based methods. The following species were identified: Enterococcus faecium (n = 15), Enterococcus durans (n = 2), Enterococcus hirae (n = 2), Enterococcus lactis (n = 1), Lactiplantibacillus plantarum (n = 6), Lactococcus lactis (n = 4), Levilactobacillus brevis (n = 3), Lacticaseibacillus paracasei (n = 3), Lacticaseibacillus rhamnosus (n = 1), and Pediococcus acidilactici (n = 1). Among the strains, three of them, L. lactis LGMY8, Lb. plantarum LGMY30 and Lb. paracasei LGMY31 were safe and showed some valuable biotechnological properties, such as high acidification, proteolytic activity, EPS production, and inhibition of undesirable bacteria that made them powerful candidates to be used as starter.


Subject(s)
Lactobacillales , Algeria , Farms , Food Microbiology , RNA, Ribosomal, 16S/genetics
5.
Environ Microbiol Rep ; 14(1): 96-109, 2022 02.
Article in English | MEDLINE | ID: mdl-34761870

ABSTRACT

The analysis of drugs in wastewater for forensic purposes has been constantly increasing and the investigation of the potential interaction between drugs or metabolites and sewage microbiota is important. The results demonstrated that cocaine esterase genes were widely distributed in 1142 global wastewater samples collected from 64 countries and linked to several bacterial species. In addition, in silico predictions indicated that carfentanil, 4F-MDMB-BINACA, 5F-MDMB-PICA, MDMB-4en-PINACA and mitragynine might also undergo microbial hydrolysis, in a similar fashion of cocaine degradation by cocaine esterase. In conclusion, it was demonstrated the microbial potential to hydrolyze drugs of abuse in wastewater environments, contributing to the critical evaluation of potential metabolites as biomarkers for microbial and human transformation of drugs in wastewater.


Subject(s)
Illicit Drugs , Microbiota , Biotransformation , Cannabinoids , Carboxylic Ester Hydrolases , Humans , Illicit Drugs/metabolism , Wastewater
6.
Microbiol Res ; 238: 126525, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32593090

ABSTRACT

Non-conventional yeasts are increasingly applied in fermented beverage industry to obtain distinctive products with improved quality. Among these yeasts, Lachancea thermotolerans has multiple features of industrial relevance, especially the production of l(+)-lactic acid (LA), useful for the biological acidification of wine and beer. Since few information is available on this peculiar activity, the current study aimed to explore the physiological and genetic variability among L. thermotolerans strains. From a strain collection, mostly isolated from wine, a huge phenotypic diversity was acknowledged and allowed the selection of a high (SOL13) and a low (COLC27) LA producer. Comparative whole-genome sequencing of these two selected strains and the type strain CBS 6340T showed a high similarity in terms of gene content and functional annotation. Notwithstanding, target gene-based analysis revealed variations between high and low producers in the key gene sequences related to LA accumulation. More in-depth investigation of the core promoters and expression analysis of the genes ldh, encoding lactate dehydrogenase, indicated the transcriptional regulation may be the principal cause behind phenotypic differences. These findings highlighted the usefulness of whole-genome sequencing coupled with expression analysis. They provided crucial genetic insights for a deeper investigation of the intraspecific variability in LA production pathway.


Subject(s)
Fungal Proteins/genetics , L-Lactate Dehydrogenase/genetics , Lactic Acid/biosynthesis , Saccharomycetales/genetics , Saccharomycetales/metabolism , Binding Sites , Biological Variation, Population , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Genome, Fungal , L-Lactate Dehydrogenase/metabolism , Molecular Sequence Annotation , Phylogeny , Promoter Regions, Genetic , Whole Genome Sequencing , Wine/microbiology
7.
Appl Microbiol Biotechnol ; 103(1): 69-82, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30362076

ABSTRACT

The reduction of the price of DNA sequencing has resulted in the emergence of large data sets to handle and analyze, especially in microbial ecosystems, which are characterized by high taxonomic and functional diversities. To assess the properties of these complex ecosystems, a conceptual background of the application of NGS technology and bioinformatics analysis to metagenomics is required. Accordingly, this article presents an overview of the evolution of knowledge of microbial ecology from traditional culture-dependent methods to culture-independent methods and the last frontier in knowledge, metagenomics. Topics that will be covered include sample preparation for NGS, starting with total DNA extraction and library preparation, followed by a brief discussion of the chemistry of NGS to help provide an understanding of which bioinformatics pipeline approach may be helpful for achieving a researcher's goals. The importance of selecting appropriate sequencing coverage and depth parameters to obtain a suitable measure of microbial diversity is discussed. As all DNA sequencing processes produce base-calling errors that compromise data analysis, including genome assembly and microbial functional analysis, dedicated software is presented and conceptually discussed with regard to potential applications in the general microbial ecology field.


Subject(s)
Computational Biology/methods , Industrial Microbiology/methods , Metagenomics/methods , Biodiversity , Gene Library , High-Throughput Nucleotide Sequencing/methods , Metagenomics/statistics & numerical data , Phylogeny , Quality Control
SELECTION OF CITATIONS
SEARCH DETAIL
...