Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(5)2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38475015

ABSTRACT

Respiratory diseases are among the leading causes of death globally, with the COVID-19 pandemic serving as a prominent example. Issues such as infections affect a large population and, depending on the mode of transmission, can rapidly spread worldwide, impacting thousands of individuals. These diseases manifest in mild and severe forms, with severely affected patients requiring ventilatory support. The air-oxygen blender is a critical component of mechanical ventilators, responsible for mixing air and oxygen in precise proportions to ensure a constant supply. The most commonly used version of this equipment is the analog model, which faces several challenges. These include a lack of precision in adjustments and the inspiratory fraction of oxygen, as well as gas wastage from cylinders as pressure decreases. The research proposes a blender model utilizing only dynamic pressure sensors to calculate oxygen saturation, based on Bernoulli's equation. The model underwent validation through simulation, revealing a linear relationship between pressures and oxygen saturation up to a mixture outlet pressure of 500 cmH2O. Beyond this value, the relationship begins to exhibit non-linearities. However, these non-linearities can be mitigated through a calibration algorithm that adjusts the mathematical model. This research represents a relevant advancement in the field, addressing the scarcity of work focused on this essential equipment crucial for saving lives.


Subject(s)
Oxygen , Pandemics , Humans , Ventilators, Mechanical , Pressure , Calibration
2.
Sensors (Basel) ; 22(6)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35336353

ABSTRACT

Respiratory diseases are one of the most common causes of death in the world and this recent COVID-19 pandemic is a key example. Problems such as infections, in general, affect many people and depending on the form of transmission they can spread throughout the world and weaken thousands of people. Two examples are severe acute respiratory syndrome and the recent coronavirus disease. These diseases have mild and severe forms, in which patients gravely affected need ventilatory support. The equipment that serves as a basis for operation of the mechanical ventilator is the air-oxygen blender, responsible for carrying out the air-oxygen mixture in the proper proportions ensuring constant supply. New blender models are described in the literature together with applications of control techniques, such as Proportional, Integrative and Derivative (PID); Fuzzy; and Adaptive. The results obtained from the literature show a significant improvement in patient care when using automatic controls instead of manual adjustment, increasing the safety and accuracy of the treatment. This study presents a deep review of the state of the art in air-oxygen benders, identifies the most relevant characteristics, performs a comparison study considering the most relevant available solutions, and identifies open research directions in the topic.


Subject(s)
COVID-19 , Oxygen , COVID-19/therapy , Humans , Oxygen/therapeutic use , Pandemics , Ventilators, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...