Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Pharmaceuticals (Basel) ; 15(9)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36145320

ABSTRACT

In this study, we report the synthesis of twenty new acridine-thiosemicarbazone derivatives and their antiproliferative activities. Mechanisms of action such as the inhibition of topoisomerase IIα and the interaction with DNA have been studied for some of the most active derivatives by means of both in silico and in vitro methods, and evaluations of the non-clinical toxicities (in vivo) in mice. In general, the compounds showed greater cytotoxicity against B16-F10 cells, with the highest potency for DL-08 (IC50 = 14.79 µM). Derivatives DL-01 (77%), DL-07 (74%) and DL-08 (79%) showed interesting inhibition of topoisomerase IIα when compared to amsacrine, at 100 µM. In silico studies proposed the way of bonding of these compounds and a possible stereoelectronic reason for the absence of enzymatic activity for CL-07 and DL-06. Interactions with DNA presented different spectroscopic effects and indicate that the compound CL-07 has higher affinity for DNA (Kb = 4.75 × 104 M-1; Ksv = 2.6 × 103 M-1). In addition, compounds selected for non-clinical toxicity testing did not show serious signs of toxicity at the dose of 2000 mg/kg in mice; cytotoxic tests performed on leukemic cells (K-562) and its resistant form (K-562 Lucena 1) identified moderate potency for DL-01 and DL-08, with IC50 between 11.45 and 17.32 µM.

2.
Pharmacol Rep ; 73(3): 907-925, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33590474

ABSTRACT

BACKGROUND: In this article, a series of 20 new thiosemicarbazone derivatives containing indole were synthesized and evaluated for their anti-inflammatory potential. METHODS: The compounds were obtained through a synthetic route of only two steps, with yields that varied between 33.6 and 90.4%, and characterized by spectroscopic and spectrometric techniques. RESULTS: An initial screening through the lymphoproliferation assay revealed that compounds LT76, LT81, and LT87 were able to inhibit lymphocyte proliferation, with CC50 of 0.56 ± 0.036, 0.9 ± 0.01 and 0.5 ± 0.07 µM, respectively, better results than indomethacin (CC50 > 12 µM). In addition, these compounds were able to suppress the in-vitro production of TNF-α and NO, in addition to stimulating the production of IL-4. Reinforcing in-vitro assays, the compounds were able to inhibit COX-2 similar to Celecoxib showing greater selectivity for this isoform (LT81 SI: 23.06 versus Celecoxib SI: 11.88). Animal studies showed that compounds LT76 (64.8% inhibition after 6 h), LT81 (89% inhibition after 6 h) and LT87 (100% inhibition after 4 h) were able to suppress edema in mice after inoculation carrageenan with greater potency than indomethacin, and immunohistochemistry revealed that the groups treated with LT76, LT81 and LT87 reduced the expression of COX-2, similar or better results when compared to indomethacin. Complementarily, in-silico studies have shown that these compounds have a good pharmacokinetic profile, for respecting the parameters of Lipinski and Veber, showing their good bioavailability. CONCLUSIONS: These results demonstrate the potency of thiosemicarbazone derivatives containing indole and confirm their importance as scaffolds of molecules with notorious anti-inflammatory activity.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cyclooxygenase 1/metabolism , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2/metabolism , Thiosemicarbazones/pharmacology , Animals , Carrageenan/pharmacology , Celecoxib/pharmacology , Cell Proliferation/drug effects , Edema/drug therapy , Edema/metabolism , Indoles/pharmacology , Indomethacin/pharmacology , Lymphocytes/drug effects , Lymphocytes/metabolism , Male , Mice , Mice, Inbred BALB C
3.
PLoS One ; 14(11): e0225425, 2019.
Article in English | MEDLINE | ID: mdl-31765429

ABSTRACT

Schistosomiasis is caused by a trematode of the genus Schistosoma and affects over 200 million people worldwide. The only drug recommended by the World Health Organization for treatment and control of schistosomiasis is praziquantel. Development of new drugs is therefore of great importance. Thiazoles are regarded as privileged structures with a broad spectrum of activities and are potential sources of new drug prototypes, since they can act through interactions with DNA and inhibition of DNA synthesis. In this context, we report the synthesis of a series of thiazole derivatives and their in vitro schistosomicidal activity by testing eight molecules (NJ03-08; NJ11-12) containing thiazole structures. Parameters such as motility and mortality, egg laying, pairing and parasite viability by ATP quantification, which were influenced by these compounds, were evaluated during the assays. Scanning electron microscopy (SEM) was utilized for evaluation of morphological changes in the tegument. Schistosomula and adult worms were treated in vitro with different concentrations (6.25 to 50 µM) of the thiazoles for up to 5 and 3 days, respectively. After in vitro treatment for five days with 6.25 µM NJ05 or NJ07 separately, we observed a decrease of 30% in schistosomula viability, whilst treatment with NJ05+NJ07 lead to a reduction of 75% in viability measured by ATP quantitation and propidium iodide labeling. Adult worms' treatment with 50 µM NJ05, NJ07 or NJ05 + NJ07 showed decreased motility to 30-50% compared with controls. Compound NJ05 was more effective than NJ07, and adult worm viability after three days was reduced to 25% in parasites treated with 50 µM NJ05, compared with a viability reduction to 40% with 50 µM NJ07. SEM analysis showed severe alterations in adult worms with formation of bulges and blisters throughout the dorsal region of parasites treated with NJ05 or NJ07. Oviposition was extremely affected by treatment with the NJ series compounds; at concentrations of 25 µM and 50 µM, oviposition reached almost zero with NJ05, NJ07 or NJ05 + NJ07 already at day one. Tested genes involved in egg biosynthesis were all confirmed by qPCR as downregulated in females treated with 25 µM NJ05 for 2 days, with a significant reduction in expression of p14, Tyrosinase 2, p48 and fs800. NJ05, NJ07 or NJ05+NJ07 treatment of HEK293 (human embryonic cell line) and HES (human epithelial cell line) showed EC50 in the range of 18.42 to 145.20 µM. Overall, our results demonstrate that those molecules are suitable targets for further development into new drugs for schistosomiasis treatment, although progress is needed to lessen the cytotoxic effects on human cells. According to the present study, thiazole derivatives have schistosomicidal activities and may be part of a possible new arsenal of compounds against schistosomiasis.


Subject(s)
Anthelmintics/toxicity , Schistosoma mansoni/drug effects , Thiazoles/toxicity , Animals , Anthelmintics/chemical synthesis , Female , HEK293 Cells , Humans , Male , Oviposition/drug effects , Schistosoma mansoni/physiology , Thiazoles/chemical synthesis
4.
PLoS One ; 14(11): e0225425, 2019.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17288

ABSTRACT

Schistosomiasis is caused by a trematode of the genus Schistosoma and affects over 200 million people worldwide. The only drug recommended by the World Health Organization for treatment and control of schistosomiasis is praziquantel. Development of new drugs is therefore of great importance. Thiazoles are regarded as privileged structures with a broad spectrum of activities and are potential sources of new drug prototypes, since they can act through interactions with DNA and inhibition of DNA synthesis. In this context, we report the synthesis of a series of thiazole derivatives and their in vitro schistosomicidal activity by testing eight molecules (NJ03-08; NJ11-12) containing thiazole structures. Parameters such as motility and mortality, egg laying, pairing and parasite viability by ATP quantification, which were influenced by these compounds, were evaluated during the assays. Scanning electron microscopy (SEM) was utilized for evaluation of morphological changes in the tegument. Schistosomula and adult worms were treated in vitro with different concentrations (6.25 to 50 µM) of the thiazoles for up to 5 and 3 days, respectively. After in vitro treatment for five days with 6.25 µM NJ05 or NJ07 separately, we observed a decrease of 30% in schistosomula viability, whilst treatment with NJ05+NJ07 lead to a reduction of 75% in viability measured by ATP quantitation and propidium iodide labeling. Adult worms’ treatment with 50 µM NJ05, NJ07 or NJ05 + NJ07 showed decreased motility to 30–50% compared with controls. Compound NJ05 was more effective than NJ07, and adult worm viability after three days was reduced to 25% in parasites treated with 50 µM NJ05, compared with a viability reduction to 40% with 50 µM NJ07. SEM analysis showed severe alterations in adult worms with formation of bulges and blisters throughout the dorsal region of parasites treated with NJ05 or NJ07. Oviposition was extremely affected by treatment with the NJ series compounds; at concentrations of 25 µM and 50 µM, oviposition reached almost zero with NJ05, NJ07 or NJ05 + NJ07 already at day one. Tested genes involved in egg biosynthesis were all confirmed by qPCR as downregulated in females treated with 25 µM NJ05 for 2 days, with a significant reduction in expression of p14, Tyrosinase 2, p48 and fs800. NJ05, NJ07 or NJ05+NJ07 treatment of HEK293 (human embryonic cell line) and HES (human epithelial cell line) showed EC50 in the range of 18.42 to 145.20 µM. Overall, our results demonstrate that those molecules are suitable targets for further development into new drugs for schistosomiasis treatment, although progress is needed to lessen the cytotoxic effects on human cells. According to the present study, thiazole derivatives have schistosomicidal activities and may be part of a possible new arsenal of compounds against schistosomiasis.

5.
PLoS One, v. 14, n. 11, e0225425, nov. 2019
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2877

ABSTRACT

Schistosomiasis is caused by a trematode of the genus Schistosoma and affects over 200 million people worldwide. The only drug recommended by the World Health Organization for treatment and control of schistosomiasis is praziquantel. Development of new drugs is therefore of great importance. Thiazoles are regarded as privileged structures with a broad spectrum of activities and are potential sources of new drug prototypes, since they can act through interactions with DNA and inhibition of DNA synthesis. In this context, we report the synthesis of a series of thiazole derivatives and their in vitro schistosomicidal activity by testing eight molecules (NJ03-08; NJ11-12) containing thiazole structures. Parameters such as motility and mortality, egg laying, pairing and parasite viability by ATP quantification, which were influenced by these compounds, were evaluated during the assays. Scanning electron microscopy (SEM) was utilized for evaluation of morphological changes in the tegument. Schistosomula and adult worms were treated in vitro with different concentrations (6.25 to 50 µM) of the thiazoles for up to 5 and 3 days, respectively. After in vitro treatment for five days with 6.25 µM NJ05 or NJ07 separately, we observed a decrease of 30% in schistosomula viability, whilst treatment with NJ05+NJ07 lead to a reduction of 75% in viability measured by ATP quantitation and propidium iodide labeling. Adult worms’ treatment with 50 µM NJ05, NJ07 or NJ05 + NJ07 showed decreased motility to 30–50% compared with controls. Compound NJ05 was more effective than NJ07, and adult worm viability after three days was reduced to 25% in parasites treated with 50 µM NJ05, compared with a viability reduction to 40% with 50 µM NJ07. SEM analysis showed severe alterations in adult worms with formation of bulges and blisters throughout the dorsal region of parasites treated with NJ05 or NJ07. Oviposition was extremely affected by treatment with the NJ series compounds; at concentrations of 25 µM and 50 µM, oviposition reached almost zero with NJ05, NJ07 or NJ05 + NJ07 already at day one. Tested genes involved in egg biosynthesis were all confirmed by qPCR as downregulated in females treated with 25 µM NJ05 for 2 days, with a significant reduction in expression of p14, Tyrosinase 2, p48 and fs800. NJ05, NJ07 or NJ05+NJ07 treatment of HEK293 (human embryonic cell line) and HES (human epithelial cell line) showed EC50 in the range of 18.42 to 145.20 µM. Overall, our results demonstrate that those molecules are suitable targets for further development into new drugs for schistosomiasis treatment, although progress is needed to lessen the cytotoxic effects on human cells. According to the present study, thiazole derivatives have schistosomicidal activities and may be part of a possible new arsenal of compounds against schistosomiasis.

6.
Acta Crystallogr Sect E Struct Rep Online ; 69(Pt 2): o224, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23424505

ABSTRACT

In the title compound, C(19)H(15)NO(4), the acridine system is essentially planar (r.m.s. deviation = 0.015 Å). The crystal packing exhibits π-π inter-actions between pairs of centrosymmetric mol-ecules, one of them between the central heterocyclic rings and others between the outer benzene rings of the acridine systems, with centroid-centroid distances of 3.692 (1) and 3.754 (1) Å, respectively. These pairs are further linked by additional π-π inter-actions along the a-axis direction through one of the two outer benzene ring of neighboring mol-ecules, with a centroid-centroid distance of 3.642 (2) Å.

SELECTION OF CITATIONS
SEARCH DETAIL
...