Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Sports Med Phys Fitness ; 63(1): 77-85, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35437303

ABSTRACT

INTRODUCTION: Currently, there is an increase in people practicing freediving (FD) both in competition and leisure. As a sports practice, its modalities are grouped into static, dynamic, and constant weight apnea. The aim of this systematic review and meta-analysis (PROSPERO-CRD42021230322) was to identify the training methods used to improve the static apnea time (AT) performance. EVIDENCE ACQUISITION: Ten training protocols were analyzed from eight studies published until March 09, 2022. The effect size (Hedge's g) and its confidence interval (CI95%) were calculated from the AT measured pre- and post-training. EVIDENCE SYNTHESIS: Three different apnea training methods were verified, the breath-hold (BH) that uses BH exercises, physical training with strength and cardiorespiratory exercises, and cross training that combines BH exercises with physical training. These training methods were applied to 138 participants of both sexes with or without experience in apnea episode or diving practice. In general, the AT improvement showed a large effect after the interventions (g=1.30, CI95%=0.85-1.76, P<0.01). CONCLUSIONS: All three methods were effective in improving static AT, however from the existing protocols is not possible to recommend an ideal to improve AT and therefore FD performance.


Subject(s)
Apnea , Diving , Male , Female , Humans , Apnea/therapy , Breath Holding , Exercise , Exercise Therapy
2.
J Strength Cond Res ; 29(10): 2836-43, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25148466

ABSTRACT

The purpose of this study was to understand the ventilatory and physiological responses immediately below and above the maximal lactate steady-state (MLSS) velocity and to determine the relationship of oxygen uptake (VO2) kinetics parameters with performance, in swimmers. Competitive athletes (N = 12) completed in random order and on different days a 400-m all-out test, an incremental step test comprising 5 × 250- and 1 × 200-m stages and 30 minutes at a constant swimming velocity (SV) at 87.5, 90, and 92.5% of the maximal aerobic velocity for MLSS velocity (MLSSv) determination. Two square-wave transitions of 500 m, 2.5% above and below the MLSSv were completed to determine VO2 on-kinetics. End-exercise VO2 at 97.5 and 102.5% of MLSSv represented, respectively, 81 and 97% of VO2max; the latter was not significantly different from maximal VO2 (VO2max). The VO2 at MLSSv (49.3 ± 9.2 ml·kg(-1)·min(-1)) was not significantly different from the second ventilatory threshold (VT2) (51.3 ± 7.6 ml·kg(-1)·min(-1)). The velocity associated with MLSS seems to be accurately estimated by the SV at VT2 (vVT2), and vVO2max also seems to be estimated with accuracy from the central 300-m mean velocity of a 400-m trial, indicators that represent a helpful tool for coaches. The 400-m swimming performance (T400) was correlated with the time constant of the primary phase VO2 kinetics (τp) at 97.5% MLSSv, and T800 was correlated with τp in both 97.5 and 102.5% of MLSSv. The assessment of the VO2 kinetics in swimming can help coaches to build training sets according to a swimmer's individual physiological response.


Subject(s)
Anaerobic Threshold/physiology , Swimming/physiology , Adolescent , Athletic Performance/physiology , Exercise Test , Humans , Kinetics , Male , Oxygen Consumption/physiology , Random Allocation , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...